Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
Geological Survey of Israel, Jerusalem, Israel.
Geobiology. 2022 Jul;20(4):518-532. doi: 10.1111/gbi.12493. Epub 2022 Apr 5.
The hypersaline Dead Sea and its sediments are natural laboratories for studying extremophile microorganism habitat response to environmental change. In modern times, increased freshwater runoff to the lake surface waters resulted in stratification and dilution of the upper water column followed by microbial blooms. However, whether these events facilitated a microbial response in the deep lake and sediments is obscure. Here we investigate archived evidence of microbial processes and changing regional hydroclimate conditions by reconstructing deep Dead Sea chemical compositions from pore fluid major ion concentration and stable S, O, and C isotopes, together with lipid biomarkers preserved in the hypersaline deep Dead Sea ICDP-drilled core sediments dating to the early Holocene (ca. 10,000 years BP). Following a significant negative lake water balance resulting in salt layer deposits at the start of the Holocene, there was a general period of positive net water balance at 9500-8300 years BP. The pore fluid isotopic composition of sulfate exhibit evidence of intensified microbial sulfate reduction, where both and of sulfate show a sharp increase from estimated base values of 15.0‰ and 13.9‰ to 40.2‰ and 20.4‰, respectively, and a vs. slope of 0.26. The presence of the n-C alkane biomarker in the sediments suggests an increase of cyanobacteria or phytoplankton contribution to the bulk organic matter that reached the deepest parts of the Dead Sea. Although hydrologically disconnected, both the Mediterranean Sea and the Dead Sea microbial ecosystems responded to increased freshwater runoff during the early Holocene, with the former depositing the organic-rich sapropel 1 layer due to anoxic water column conditions. In the Dead Sea prolonged positive net water balance facilitated primary production and algal blooms in the upper waters and intensified microbial sulfate reduction in the hypolimnion and/or at the sediment-brine interface.
高盐度的死海及其沉积物是研究极端微生物栖息地对环境变化响应的天然实验室。在现代,流入湖表面的淡水增加导致上层水的分层和稀释,随后出现微生物大量繁殖。然而,这些事件是否促进了深层湖泊和沉积物中的微生物反应尚不清楚。在这里,我们通过重建死海深部孔隙流体主要离子浓度和稳定的 S、O 和 C 同位素以及保存在超盐度深死海 ICDP 钻探岩芯沉积物中的脂质生物标志物的深部死海化学成分,来研究微生物过程和不断变化的区域水文气候条件的存档证据,这些沉积物的年代可以追溯到全新世早期(约 10000 年前)。在全新世开始时由于盐层沉积导致湖水收支严重失衡之后,9500-8300 年前出现了一个普遍的正净水量平衡时期。硫酸盐的孔隙流体同位素组成显示出微生物硫酸盐还原作用加剧的证据,其中 和 的硫酸盐分别从估计的基础值 15.0‰和 13.9‰急剧增加到 40.2‰和 20.4‰,并且 与 的斜率为 0.26。沉积物中 n-C 直链烷烃生物标志物的存在表明,蓝藻或浮游植物对到达死海最深处的大部分有机物质的贡献增加。尽管在水文上是隔绝的,但地中海和死海微生物生态系统都对全新世早期淡水径流的增加做出了响应,前者由于缺氧水柱条件而沉积了富含有机物的萨普洛佩尔 1 层。在死海中,长时间的正净水量平衡促进了上覆水的初级生产和藻类大量繁殖,并加剧了缺氧层和/或沉积物-盐水界面的微生物硫酸盐还原作用。