Suppr超能文献

多污染物方法评估空气污染混合物对大型前瞻性队列人群总死亡率的因果效应。

A Multipollutant Approach to Estimating Causal Effects of Air Pollution Mixtures on Overall Mortality in a Large, Prospective Cohort.

机构信息

From the Institute for Risk Assessment Sciences, Utrecht University, Utrecht.

Department of Epidemiology, Netherlands Cancer Institute (NKI), Amsterdam.

出版信息

Epidemiology. 2022 Jul 1;33(4):514-522. doi: 10.1097/EDE.0000000000001492. Epub 2022 Apr 5.

Abstract

BACKGROUND

Several studies have confirmed associations between air pollution and overall mortality, but it is unclear to what extent these associations reflect causal relationships. Moreover, few studies to our knowledge have accounted for complex mixtures of air pollution. In this study, we evaluate the causal effects of a mixture of air pollutants on overall mortality in a large, prospective cohort of Dutch individuals.

METHODS

We evaluated 86,882 individuals from the LIFEWORK study, assessing overall mortality between 2013 and 2017 through national registry linkage. We predicted outdoor concentration of five air pollutants (PM2.5, PM10, NO2, PM2.5 absorbance, and oxidative potential) with land-use regression. We used logistic regression and mixture modeling (weighted quantile sum and boosted regression tree models) to identify potential confounders, assess pollutants' relevance in the mixture-outcome association, and investigate interactions and nonlinearities. Based on these results, we built a multivariate generalized propensity score model to estimate the causal effects of pollutant mixtures.

RESULTS

Regression model results were influenced by multicollinearity. Weighted quantile sum and boosted regression tree models indicated that all components contributed to a positive linear association with the outcome, with PM2.5 being the most relevant contributor. In the multivariate propensity score model, PM2.5 (OR=1.18, 95% CI: 1.08-1.29) and PM10 (OR=1.02, 95% CI: 0.91-1.14) were associated with increased odds of mortality per interquartile range increase.

CONCLUSION

Using novel methods for causal inference and mixture modeling in a large prospective cohort, this study strengthened the causal interpretation of air pollution effects on overall mortality, emphasizing the primary role of PM2.5 within the pollutant mixture.

摘要

背景

多项研究已证实空气污染与全因死亡率之间存在关联,但这些关联在多大程度上反映了因果关系尚不清楚。此外,据我们所知,很少有研究考虑到空气污染的复杂混合物。在这项研究中,我们评估了空气污染混合物对荷兰大型前瞻性队列个体全因死亡率的因果效应。

方法

我们评估了 LIFEWORK 研究中的 86882 名个体,通过国家登记处的链接评估 2013 年至 2017 年期间的全因死亡率。我们使用土地利用回归预测五种空气污染物(PM2.5、PM10、NO2、PM2.5 吸光度和氧化势)的室外浓度。我们使用逻辑回归和混合模型(加权分位数总和和增强回归树模型)来识别潜在的混杂因素,评估污染物在混合物-结果关联中的相关性,并研究相互作用和非线性。基于这些结果,我们构建了一个多变量广义倾向评分模型来估计污染物混合物的因果效应。

结果

回归模型结果受到多重共线性的影响。加权分位数总和和增强回归树模型表明,所有成分都与结果呈正线性关联,其中 PM2.5 是最相关的贡献者。在多变量倾向评分模型中,PM2.5(OR=1.18,95%CI:1.08-1.29)和 PM10(OR=1.02,95%CI:0.91-1.14)与每增加一个四分位间距的死亡风险增加相关。

结论

本研究使用新的因果推理方法和混合模型在大型前瞻性队列中进行研究,强化了空气污染对全因死亡率影响的因果解释,强调了 PM2.5 在污染物混合物中的主要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a05/9148665/e848ad90d8f6/ede-33-514-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验