Suppr超能文献

使用环境效益制图和分析计划-社区版(BenMAP-CE)量化多污染物对健康的影响:以佐治亚州亚特兰大为案例。

Quantifying Multipollutant Health Impacts Using the Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE): A Case Study in Atlanta, Georgia.

机构信息

Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency (US EPA), Research Triangle Park, North Carolina, USA.

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.

出版信息

Environ Health Perspect. 2024 Mar;132(3):37003. doi: 10.1289/EHP12969. Epub 2024 Mar 6.

Abstract

BACKGROUND

Air pollution risk assessments do not generally quantify health impacts using multipollutant risk estimates, but instead use results from single-pollutant or copollutant models. Multipollutant epidemiological models account for pollutant interactions and joint effects but can be computationally complex and data intensive. Risk estimates from multipollutant studies are therefore challenging to implement in the quantification of health impacts.

OBJECTIVES

Our objective was to conduct a case study using a developmental multipollutant version of the Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) to estimate the health impact associated with changes in multiple air pollutants using both a single and multipollutant approach.

METHODS

BenMAP-CE was used to estimate the change in the number of pediatric asthma emergency department (ED) visits attributable to simulated changes in air pollution between 2011 and 2025 in Atlanta, Georgia, applying risk estimates from an epidemiological study that examined short-term single-pollutant and multipollutant (with and without first-order interactions) exposures. Analyses examined individual pollutants (i.e., ozone, fine particulate matter, carbon monoxide, nitrogen dioxide (), sulfur dioxide, and particulate matter components) and combinations of these pollutants meant to represent shared properties or predefined sources (i.e., oxidant gases, secondary pollutants, traffic, power plant, and criteria pollutants). Comparisons were made between multipollutant health impact functions (HIF) and the sum of single-pollutant HIFs for the individual pollutants that constitute the respective pollutant groups.

RESULTS

Photochemical modeling predicted large decreases in most of the examined pollutant concentrations between 2011 and 2025 based on sector specific (i.e., source-based) estimates of growth and anticipated controls. Estimated number of avoided asthma ED visits attributable to any given multipollutant group were generally higher when using results from models that included interaction terms in comparison with those that did not. We estimated the greatest number of avoided pediatric asthma ED visits for pollutant groups that include (i. e., criteria pollutants, oxidants, and traffic pollutants). In models that accounted for interaction, year-round estimates for pollutant groups that included ranged from 27.1 [95% confidence interval (CI): 1.6, 52.7; traffic pollutants] to 55.4 (95% CI: 41.8, 69.0; oxidants) avoided pediatric asthma ED visits. Year-round results using multipollutant risk estimates with interaction were comparable to the sum of the single-pollutant results corresponding to most multipollutant groups [e.g., 52.9 (95% CI: 43.6, 62.2) for oxidants] but were notably lower than the sum of the single-pollutant results for some pollutant groups [e.g., 77.5 (95% CI: 66.0, 89.0) for traffic pollutants].

DISCUSSION

Performing a multipollutant health impact assessment is technically feasible but computationally complex. It requires time, resources, and detailed input parameters not commonly reported in air pollution epidemiological studies. Results estimated using the sum of single-pollutant models are comparable to those quantified using a multipollutant model. Although limited to a single study and location, assessing the trade-offs between a multipollutant and single-pollutant approach is warranted. https://doi.org/10.1289/EHP12969.

摘要

背景

空气污染风险评估通常不使用多污染物风险估计来量化健康影响,而是使用单污染物或共污染物模型的结果。多污染物流行病学模型考虑了污染物相互作用和联合效应,但可能计算复杂且数据密集。因此,多污染物研究的风险估计在量化健康影响方面具有挑战性。

目的

我们的目标是使用环境效益制图和分析计划-社区版(BenMAP-CE)的发展型多污染物版本进行案例研究,使用单污染物和多污染物方法估计 2011 年至 2025 年期间多种空气污染物变化引起的儿科哮喘急诊就诊人数的变化。

方法

BenMAP-CE 用于估计 2011 年至 2025 年期间,由于空气污染物模拟变化,佐治亚州亚特兰大市儿科哮喘急诊就诊人数的变化,应用了短期单污染物和多污染物(包括和不包括一阶相互作用)暴露的流行病学研究中的风险估计。分析检查了个别污染物(即臭氧、细颗粒物、一氧化碳、二氧化氮()、二氧化硫和颗粒物成分)以及代表共同特性或预定义来源的这些污染物的组合(即氧化气体、二次污染物、交通、电厂和标准污染物)。将多污染物健康影响函数(HIF)与构成各自污染物组的单个污染物的 HIF 之和进行了比较。

结果

光化学模型预测,根据特定部门(即基于源的)对增长和预期控制的估计,2011 年至 2025 年期间,大多数检查的污染物浓度将大幅下降。归因于任何给定多污染物组的避免的哮喘急诊就诊人数通常在使用包括相互作用项的模型的结果时高于不包括相互作用项的结果。我们估计,包括(即标准污染物、氧化剂和交通污染物)在内的污染物组的避免儿科哮喘急诊就诊的人数最多。在考虑相互作用的模型中,包括(i. e.,标准污染物、氧化剂和交通污染物)在内的污染物组的全年估计数从 27.1[95%置信区间(CI):1.6,52.7;交通污染物]到 55.4(95% CI:41.8,69.0;氧化剂)避免了儿科哮喘急诊就诊。使用具有相互作用的多污染物风险估计的全年结果与大多数多污染物组对应的单污染物结果的总和相当[例如,52.9(95% CI:43.6,62.2)对于氧化剂],但明显低于某些污染物组的单污染物结果的总和[例如,77.5(95% CI:66.0,89.0)对于交通污染物]。

讨论

进行多污染物健康影响评估在技术上是可行的,但计算复杂。它需要时间、资源和空气污染物流行病学研究中通常未报告的详细输入参数。使用单污染物模型总和估计的结果与使用多污染物模型量化的结果相当。尽管仅限于一项研究和一个地点,但评估多污染物和单污染物方法之间的权衡是值得的。https://doi.org/10.1289/EHP12969.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1508/10916644/a43163773311/ehp12969_f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验