Suppr超能文献

EpiMob:用于疫情防控的全城人类移动限制的交互式可视分析。

EpiMob: Interactive Visual Analytics of Citywide Human Mobility Restrictions for Epidemic Control.

出版信息

IEEE Trans Vis Comput Graph. 2023 Aug;29(8):3586-3601. doi: 10.1109/TVCG.2022.3165385. Epub 2023 Jun 29.

Abstract

The outbreak of coronavirus disease (COVID-19) has swept across more than 180 countries and territories since late January 2020. As a worldwide emergency response, governments have implemented various measures and policies, such as self-quarantine, travel restrictions, work from home, and regional lockdown, to control the spread of the epidemic. These countermeasures seek to restrict human mobility because COVID-19 is a highly contagious disease that is spread by human-to-human transmission. Medical experts and policymakers have expressed the urgency to effectively evaluate the outcome of human restriction policies with the aid of big data and information technology. Thus, based on big human mobility data and city POI data, an interactive visual analytics system called Epidemic Mobility (EpiMob) was designed in this study. The system interactively simulates the changes in human mobility and infection status in response to the implementation of a certain restriction policy or a combination of policies (e.g., regional lockdown, telecommuting, screening). Users can conveniently designate the spatial and temporal ranges for different mobility restriction policies. Then, the results reflecting the infection situation under different policies are dynamically displayed and can be flexibly compared and analyzed in depth. Multiple case studies consisting of interviews with domain experts were conducted in the largest metropolitan area of Japan (i.e., Greater Tokyo Area) to demonstrate that the system can provide insight into the effects of different human mobility restriction policies for epidemic control, through measurements and comparisons.

摘要

自 2020 年 1 月下旬以来,冠状病毒病(COVID-19)疫情已在 180 多个国家和地区蔓延。作为全球紧急应对措施,各国政府实施了各种措施和政策,例如自我隔离、旅行限制、居家办公和区域封锁,以控制疫情的传播。这些对策旨在限制人员流动,因为 COVID-19 是一种高度传染性疾病,通过人与人之间的传播。医学专家和政策制定者表示,迫切需要借助大数据和信息技术有效评估人员限制政策的结果。因此,本研究设计了一个名为 Epidemic Mobility(EpiMob)的交互可视化分析系统,该系统基于大规模的人类流动数据和城市 POI 数据。该系统可交互式模拟人类流动和感染状态的变化,以响应实施某种限制政策或多种政策的组合(例如,区域封锁、远程办公、筛查)。用户可以方便地指定不同流动性限制政策的时空范围。然后,动态显示反映不同政策下感染情况的结果,并可以灵活地进行深入比较和分析。在日本最大的都市区(即大东京地区)进行了包括与领域专家进行访谈的多个案例研究,以证明该系统可以通过测量和比较,深入了解不同人类流动性限制政策对疫情控制的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验