Institute of Automation, Chinese Academy of Sciences, Beijing, China.
SynSense AG Corporation, Zurich, Switzerland.
Nat Commun. 2024 May 25;15(1):4464. doi: 10.1038/s41467-024-47811-6.
By mimicking the neurons and synapses of the human brain and employing spiking neural networks on neuromorphic chips, neuromorphic computing offers a promising energy-efficient machine intelligence. How to borrow high-level brain dynamic mechanisms to help neuromorphic computing achieve energy advantages is a fundamental issue. This work presents an application-oriented algorithm-software-hardware co-designed neuromorphic system for this issue. First, we design and fabricate an asynchronous chip called "Speck", a sensing-computing neuromorphic system on chip. With the low processor resting power of 0.42mW, Speck can satisfy the hardware requirements of dynamic computing: no-input consumes no energy. Second, we uncover the "dynamic imbalance" in spiking neural networks and develop an attention-based framework for achieving the algorithmic requirements of dynamic computing: varied inputs consume energy with large variance. Together, we demonstrate a neuromorphic system with real-time power as low as 0.70mW. This work exhibits the promising potentials of neuromorphic computing with its asynchronous event-driven, sparse, and dynamic nature.
通过模拟人类大脑的神经元和突触,并在神经形态芯片上使用尖峰神经网络,神经形态计算为节能型机器智能提供了一种有前途的方法。如何借鉴高级大脑动态机制来帮助神经形态计算实现节能优势是一个基本问题。这项工作提出了一个面向应用的算法-软件-硬件协同设计的神经形态系统来解决这个问题。首先,我们设计并制造了一种名为“Speck”的异步芯片,这是一种片上传感计算神经形态系统。Speck 的处理器休眠功率低至 0.42mW,可以满足动态计算的硬件要求:无输入不消耗能量。其次,我们揭示了尖峰神经网络中的“动态不平衡”现象,并开发了一种基于注意力的框架,以满足动态计算的算法要求:不同的输入消耗的能量差异很大。总之,我们展示了一个实时功率低至 0.70mW 的神经形态系统。这项工作展示了神经形态计算具有异步事件驱动、稀疏和动态特性的巨大潜力。