de la Cerda Garcia-Caro Roberto, Hokamp Karsten, Roche Fiona, Thompson Georgia, Timouma Soukaina, Delneri Daniela, Bond Ursula
Moyne Institute, School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin, Ireland.
Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin, Ireland.
PLoS Genet. 2022 Apr 7;18(4):e1010149. doi: 10.1371/journal.pgen.1010149. eCollection 2022 Apr.
The lager yeasts, Saccharomyces pastorianus, are hybrids of Saccharomyces cerevisiae and Saccharomyces eubayanus and are divided into two broad groups, Group I and II. The two groups evolved from at least one common hybridisation event but have subsequently diverged with Group I strains losing many S. cerevisiae chromosomes while the Group II strains retain both sub-genomes. The complex genomes, containing orthologous alleles from the parental chromosomes, pose interesting questions regarding gene regulation and its impact on the fermentation properties of the strains. Superimposed on the presence of orthologous alleles are complexities of gene dosage due to the aneuploid nature of the genomes. We examined the contribution of the S. cerevisiae and S. eubayanus alleles to the gene expression patterns of representative Group I and II strains during fermentation. We show that the relative expression of S. cerevisiae and S. eubayanus orthologues is positively correlated with gene copy number. Despite the reduced S. cerevisiae content in the Group I strain, S. cerevisiae orthologues contribute to biochemical pathways upregulated during fermentation which may explain the retention of specific chromosomes in the strain. Conversely, S. eubayanus genes are significantly overrepresented in the upregulated gene pool in the Group II strain. Comparison of the transcription profiles of the strains during fermentation identified both common and unique gene expression patterns, with gene copy number being a dominant contributory factor. Thus, the aneuploid genomes create complex patterns of gene expression during fermentation with gene dosage playing a crucial role both within and between strains.
大型酵母巴氏酵母(Saccharomyces pastorianus)是酿酒酵母(Saccharomyces cerevisiae)和真贝氏酵母(Saccharomyces eubayanus)的杂交种,分为I组和II组两个大类。这两组酵母起源于至少一次共同的杂交事件,但随后发生了分化,I组菌株丢失了许多酿酒酵母染色体,而II组菌株保留了两个亚基因组。其复杂的基因组包含来自亲本染色体的直系等位基因,这就基因调控及其对菌株发酵特性的影响提出了有趣的问题。由于基因组的非整倍体性质,除了直系等位基因的存在之外,还存在基因剂量的复杂性。我们研究了酿酒酵母和真贝氏酵母等位基因对I组和II组代表性菌株在发酵过程中基因表达模式的贡献。我们发现,酿酒酵母和真贝氏酵母直系同源基因的相对表达与基因拷贝数呈正相关。尽管I组菌株中酿酒酵母的含量减少,但酿酒酵母直系同源基因对发酵过程中上调的生化途径有贡献,这可能解释了该菌株中特定染色体的保留。相反,真贝氏酵母基因在II组菌株上调的基因库中显著富集。比较菌株在发酵过程中的转录谱,发现了共同和独特的基因表达模式,基因拷贝数是一个主要的影响因素。因此,非整倍体基因组在发酵过程中产生了复杂的基因表达模式,基因剂量在菌株内部和菌株之间都起着关键作用。