文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于生物纳米颗粒的疫苗和检查点阻断刺激的适应性抗肿瘤免疫反应。

Adaptive antitumor immune response stimulated by bio-nanoparticle based vaccine and checkpoint blockade.

机构信息

Liver Research Center, Rhode Island Hospital, Department of Medicine, The Warren Alpert Medical School of Brown University, RI, 02903, Providence, USA.

Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China.

出版信息

J Exp Clin Cancer Res. 2022 Apr 8;41(1):132. doi: 10.1186/s13046-022-02307-3.


DOI:10.1186/s13046-022-02307-3
PMID:35392977
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8991500/
Abstract

BACKGROUND: Interactions between tumor and microenvironment determine individual response to immunotherapy. Triple negative breast cancer (TNBC) and hepatocellular carcinoma (HCC) have exhibited suboptimal responses to immune checkpoint inhibitors (ICIs). Aspartate β-hydroxylase (ASPH), an oncofetal protein and tumor associated antigen (TAA), is a potential target for immunotherapy. METHODS: Subcutaneous HCC and orthotopic TNBC murine models were established in immunocompetent BALB/c mice with injection of BNL-T3 and 4 T1 cells, respectively. Immunohistochemistry, immunofluorescence, H&E, flow cytometry, ELISA and in vitro cytotoxicity assays were performed. RESULTS: The ASPH-MYC signaling cascade upregulates PD-L1 expression on breast and liver tumor cells. A bio-nanoparticle based λ phage vaccine targeting ASPH was administrated to mice harboring syngeneic HCC or TNBC tumors, either alone or in combination with PD-1 blockade. In control, autocrine chemokine ligand 13 (CXCL13)-C-X-C chemokine receptor type 5 (CXCR5) axis promoted tumor development and progression in HCC and TNBC. Interactions between PD-L1 cancer cells and PD-1 T cells resulted in T cell exhaustion and apoptosis, causing immune evasion of cancer cells. In contrast, combination therapy (Vaccine+PD-1 inhibitor) significantly suppressed primary hepatic or mammary tumor growth (with distant pulmonary metastases in TNBC). Adaptive immune responses were attributed to expansion of activated CD4 T helper type 1 (Th1)/CD8 cytotoxic T cells (CTLs) that displayed enhanced effector functions, and maturation of plasma cells that secreted high titers of ASPH-specific antibody. Combination therapy significantly reduced tumor infiltration of immunosuppressive CD4/CD25/FOXP3 Tregs. When the PD-1/PD-L1 signal was inhibited, CXCL13 produced by ASPH cancer cells recruited CXCR5/CD8 T lymphocytes to tertiary lymphoid structures (TLSs), comprising effector and memory CTLs, T follicular helper cells, B cell germinal center, and follicular dendritic cells. TLSs facilitate activation and maturation of DCs and actively recruit immune subsets to tumor microenvironment. These CTLs secreted CXCL13 to recruit more CXCR5 immune cells and to lyse CXCR5 cancer cells. Upon combination treatment, formation of TLSs predicts sensitivity to ICI blockade. Combination therapy substantially prolonged overall survival of mice with HCC or TNBC. CONCLUSIONS: Synergistic antitumor efficacy attributable to a λ phage vaccine specifically targeting ASPH, an ideal TAA, combined with ICIs, inhibits tumor growth and progression of TNBC and HCC.

摘要

背景:肿瘤与微环境的相互作用决定了个体对免疫疗法的反应。三阴性乳腺癌(TNBC)和肝细胞癌(HCC)对免疫检查点抑制剂(ICIs)的反应不佳。天门冬氨酸β-羟化酶(ASPH)是一种癌胚蛋白和肿瘤相关抗原(TAA),是免疫治疗的潜在靶点。

方法:在免疫功能正常的 BALB/c 小鼠中分别通过注射 BNL-T3 和 4T1 细胞建立皮下 HCC 和原位 TNBC 小鼠模型。进行免疫组织化学、免疫荧光、H&E、流式细胞术、ELISA 和体外细胞毒性测定。

结果:ASPH-MYC 信号级联反应上调了乳腺癌和肝癌肿瘤细胞上的 PD-L1 表达。一种针对 ASPH 的基于生物纳米颗粒的 λ噬菌体疫苗被施用于携带同源 HCC 或 TNBC 肿瘤的小鼠,单独或与 PD-1 阻断联合使用。在对照中,自分泌趋化因子配体 13(CXCL13)-C-X-C 趋化因子受体 5(CXCR5)轴促进了 HCC 和 TNBC 中的肿瘤发生和进展。PD-L1 癌细胞与 PD-1 T 细胞之间的相互作用导致 T 细胞耗竭和凋亡,从而使癌细胞逃避免疫。相比之下,联合治疗(疫苗+PD-1 抑制剂)显著抑制了原发性肝或乳腺肿瘤的生长(在 TNBC 中有远处肺转移)。适应性免疫反应归因于激活的 CD4 T 辅助 1 型(Th1)/CD8 细胞毒性 T 细胞(CTL)的扩增,这些细胞显示出增强的效应功能,以及浆细胞的成熟,浆细胞分泌高滴度的 ASPH 特异性抗体。联合治疗显著减少了肿瘤浸润的免疫抑制性 CD4/CD25/FOXP3 Tregs。当抑制 PD-1/PD-L1 信号时,ASPH 癌细胞产生的 CXCL13 招募了 CXCR5/CD8 T 淋巴细胞到三级淋巴结构(TLSs)中,其中包括效应和记忆 CTL、滤泡辅助 T 细胞、B 细胞生发中心和滤泡树突状细胞。TLSs 促进了 DC 的激活和成熟,并主动将免疫细胞亚群招募到肿瘤微环境中。这些 CTLs 分泌 CXCL13 以招募更多的 CXCR5 免疫细胞并裂解 CXCR5 癌细胞。在联合治疗时,TLS 的形成预测了对 ICI 阻断的敏感性。联合治疗显著延长了 HCC 或 TNBC 小鼠的总生存期。

结论:特异性针对 ASPH(理想的 TAA)的 λ 噬菌体疫苗与 ICIs 的协同抗肿瘤疗效抑制了 TNBC 和 HCC 的肿瘤生长和进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c259/8991500/ea1855d56d90/13046_2022_2307_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c259/8991500/3a1cdddefce2/13046_2022_2307_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c259/8991500/0a162668c7f8/13046_2022_2307_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c259/8991500/cb6641549bd1/13046_2022_2307_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c259/8991500/e408f0c7f634/13046_2022_2307_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c259/8991500/8cdf4233afb9/13046_2022_2307_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c259/8991500/907bae82a849/13046_2022_2307_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c259/8991500/ea1855d56d90/13046_2022_2307_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c259/8991500/3a1cdddefce2/13046_2022_2307_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c259/8991500/0a162668c7f8/13046_2022_2307_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c259/8991500/cb6641549bd1/13046_2022_2307_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c259/8991500/e408f0c7f634/13046_2022_2307_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c259/8991500/8cdf4233afb9/13046_2022_2307_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c259/8991500/907bae82a849/13046_2022_2307_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c259/8991500/ea1855d56d90/13046_2022_2307_Fig7_HTML.jpg

相似文献

[1]
Adaptive antitumor immune response stimulated by bio-nanoparticle based vaccine and checkpoint blockade.

J Exp Clin Cancer Res. 2022-4-8

[2]
CXCL13 shapes immunoactive tumor microenvironment and enhances the efficacy of PD-1 checkpoint blockade in high-grade serous ovarian cancer.

J Immunother Cancer. 2021-1

[3]
Aptamer targeted therapy potentiates immune checkpoint blockade in triple-negative breast cancer.

J Exp Clin Cancer Res. 2020-9-7

[4]
ATR inhibitor AZD6738 enhances the antitumor activity of radiotherapy and immune checkpoint inhibitors by potentiating the tumor immune microenvironment in hepatocellular carcinoma.

J Immunother Cancer. 2020-5

[5]
Antibodies Against Immune Checkpoint Molecules Restore Functions of Tumor-Infiltrating T Cells in Hepatocellular Carcinomas.

Gastroenterology. 2017-6-23

[6]
Disruption of SIRT7 Increases the Efficacy of Checkpoint Inhibitor via MEF2D Regulation of Programmed Cell Death 1 Ligand 1 in Hepatocellular Carcinoma Cells.

Gastroenterology. 2019-10-31

[7]
TGF-β1-Induced SOX18 Elevation Promotes Hepatocellular Carcinoma Progression and Metastasis Through Transcriptionally Upregulating PD-L1 and CXCL12.

Gastroenterology. 2024-7

[8]
ALG3 predicts poor prognosis and increases resistance to anti-PD-1 therapy through modulating PD-L1 N-link glycosylation in TNBC.

Int Immunopharmacol. 2024-10-25

[9]
The combination of PD-1 blockade with interferon-α has a synergistic effect on hepatocellular carcinoma.

Cell Mol Immunol. 2022-6

[10]
Preferential Expression of Programmed Death Ligand 1 Protein in Tumor-Associated Macrophages and Its Potential Role in Immunotherapy for Hepatocellular Carcinoma.

Int J Mol Sci. 2021-4-29

引用本文的文献

[1]
The Design of a Multistage Monitoring Protocol for Dendritic Cell-Derived Exosome (DEX) Immunotherapy: A Conceptual Framework for Molecular Quality Control and Immune Profiling.

Int J Mol Sci. 2025-6-6

[2]
Gut Microbiota Reshapes the Tumor Microenvironment and Affects the Efficacy of Colorectal Cancer Immunotherapy.

Cancer Med. 2025-6

[3]
Leukemia cells remodel bone marrow stromal cells to generate a protumoral microenvironment via the S100A8-NOX2-ROS signaling pathway.

Sci Rep. 2025-5-17

[4]
Immune evasion and resistance in breast cancer.

Am J Cancer Res. 2025-4-15

[5]
Advancing Breast Cancer Treatment: The Role of Immunotherapy and Cancer Vaccines in Overcoming Therapeutic Challenges.

Vaccines (Basel). 2025-3-24

[6]
Targeting B4GALT3 in BMSCs-EVs for Therapeutic Control of HCC via NF-κB pathway inhibition.

Cell Biol Toxicol. 2025-4-5

[7]
Depressive symptoms and immune depletion in Chinese patients with advanced hepatocellular carcinoma: a multicentre study on their correlation.

Gen Psychiatr. 2025-3-13

[8]
Dual mRNA nanoparticles strategy for enhanced pancreatic cancer treatment and β-elemene combination therapy.

Proc Natl Acad Sci U S A. 2025-3-18

[9]
Nanoparticles Modulating the Immune Microenvironment in Breast Cancer Treatment.

Int J Nanomedicine. 2025-2-1

[10]
Subtype-specific human endogenous retrovirus K102 envelope protein is a novel serum immunosuppressive biomarker of cancer.

Front Immunol. 2025-1-9

本文引用的文献

[1]
Bacteriophages as Solid Tumor Theragnostic Agents.

Int J Mol Sci. 2021-12-30

[2]
Immunotherapies for hepatocellular carcinoma.

Nat Rev Clin Oncol. 2022-3

[3]
Treatment landscape of triple-negative breast cancer - expanded options, evolving needs.

Nat Rev Clin Oncol. 2022-2

[4]
Bio-nanoparticle based therapeutic vaccine induces immunogenic response against triple negative breast cancer.

Am J Cancer Res. 2021-9-15

[5]
Single-cell profiling reveals the importance of CXCL13/CXCR5 axis biology in lymphocyte-rich classic Hodgkin lymphoma.

Proc Natl Acad Sci U S A. 2021-10-12

[6]
Tumor-draining lymph nodes: At the crossroads of metastasis and immunity.

Sci Immunol. 2021-9-10

[7]
Multi-organ metastasis as destination for breast cancer cells guided by biomechanical architecture.

Am J Cancer Res. 2021-6-15

[8]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[9]
Tumor Mutational Burden as a Predictive Biomarker in Solid Tumors.

Cancer Discov. 2020-12

[10]
The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy.

Nat Rev Cancer. 2020-8-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索