Suppr超能文献

ADC 纹理特征可改善单发脑转移瘤患者的临床风险模型。

ADC textural features in patients with single brain metastases improve clinical risk models.

机构信息

Department of Neurology, Medical University Innsbruck, Anichstrasse 35, A-6020, Innsbruck, Austria.

Department of Medical Statistics, Informatics and Health Economics, Medical University Innsbruck, Innsbruck, Austria.

出版信息

Clin Exp Metastasis. 2022 Jun;39(3):459-466. doi: 10.1007/s10585-022-10160-z. Epub 2022 Apr 8.

Abstract

AIMS

In this retrospective study we performed a quantitative textural analysis of apparant diffusion coefficient (ADC) images derived from diffusion weighted MRI (DW-MRI) of single brain metastases (BM) patients from different primary tumors and tested whether these imaging parameters may improve established clinical risk models.

METHODS

We identified 87 patients with single BM who had a DW-MRI at initial diagnosis. Applying image segmentation, volumes of contrast-enhanced lesions in T1 sequences, hyperintense T2 lesions (peritumoral border zone (T2PZ)) and tumor-free gray and white matter compartment (GMWMC) were generated and registered to corresponding ADC maps. ADC textural parameters were generated and a linear backward regression model was applied selecting imaging features in association with survival. A cox proportional hazard model with backward regression was fitted for the clinical prognostic models (diagnosis-specific graded prognostic assessment score (DS-GPA) and the recursive partitioning analysis (RPA)) including these imaging features.

RESULTS

Thirty ADC textural parameters were generated and linear backward regression identified eight independent imaging parameters which in combination predicted survival. Five ADC texture features derived from T2PZ, the volume of the T2PZ, the normalized mean ADC of the GMWMC as well as the mean ADC slope of T2PZ. A cox backward regression including the DS-GPA, RPA and these eight parameters identified two MRI features which improved the two risk scores (HR = 1.14 [1.05;1.24] for normalized mean ADC GMWMC and HR = 0.87 [0.77;0.97]) for ADC 3D kurtosis of the T2PZ.) CONCLUSIONS: Textural analysis of ADC maps in patients with single brain metastases improved established clinical risk models. These findings may aid to better understand the pathogenesis of BM and may allow selection of patients for new treatment options.

摘要

目的

在这项回顾性研究中,我们对来自不同原发肿瘤的单脑转移瘤(BM)患者的弥散加权 MRI(DW-MRI)衍生的表观扩散系数(ADC)图像进行了定量纹理分析,并测试了这些成像参数是否可以改善已建立的临床风险模型。

方法

我们确定了 87 例有单发 BM 的患者,他们在初诊时进行了 DW-MRI。通过图像分割,生成 T1 序列增强病变的体积、高信号 T2 病变(肿瘤周围边界区(T2PZ))和肿瘤无灰白质交界区(GMWMC),并将其与相应的 ADC 图配准。生成 ADC 纹理参数,并应用线性向后回归模型选择与生存相关的成像特征。对临床预后模型(诊断特异性分级预后评估评分(DS-GPA)和递归分区分析(RPA))进行包括这些成像特征的 Cox 比例风险模型的向后回归拟合。

结果

生成了 30 个 ADC 纹理参数,线性向后回归确定了 8 个独立的成像参数,这些参数联合预测了生存。从 T2PZ 获得的 5 个 ADC 纹理特征、T2PZ 体积、GMWMC 归一化平均 ADC 以及 T2PZ 的平均 ADC 斜率。包括 DS-GPA、RPA 和这 8 个参数在内的 Cox 向后回归确定了两个 MRI 特征,这两个特征提高了两个风险评分(GMWMC 归一化平均 ADC 的 HR=1.14[1.05;1.24]和 T2PZ 的 ADC 三维峰度的 HR=0.87[0.77;0.97])。

结论

对单发脑转移瘤患者 ADC 图的纹理分析改善了已建立的临床风险模型。这些发现可能有助于更好地了解 BM 的发病机制,并可能有助于为新的治疗选择选择患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9944/9117356/5d22facf310e/10585_2022_10160_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验