Suppr超能文献

基于双目交互和融合机制的无参考立体图像质量评估网络。

A no-Reference Stereoscopic Image Quality Assessment Network Based on Binocular Interaction and Fusion Mechanisms.

出版信息

IEEE Trans Image Process. 2022;31:3066-3080. doi: 10.1109/TIP.2022.3164537. Epub 2022 Apr 14.

Abstract

In contemporary society full of stereoscopic images, how to assess visual quality of 3D images has attracted an increasing attention in field of Stereoscopic Image Quality Assessment (SIQA). Compared with 2D-IQA, SIQA is more challenging because some complicated features of Human Visual System (HVS), such as binocular interaction and binocular fusion, must be considered. In this paper, considering both binocular interaction and fusion mechanisms of the HVS, a hierarchical no-reference stereoscopic image quality assessment network (StereoIF-Net) is proposed to simulate the whole quality perception of 3D visual signals in human cortex, including two key modules: BIM and BFM. In particular, Binocular Interaction Modules (BIMs) are constructed to simulate binocular interaction in V2-V5 visual cortex regions, in which a novel cross convolution is designed to explore the interaction details in each region. In the BIMs, different output channel numbers are designed to imitate various receptive fields in V2-V5. Furthermore, a Binocular Fusion Module (BFM) with automatic learned weights is proposed to model binocular fusion of the HVS in higher cortex layers. The verification experiments are conducted on the LIVE 3D, IVC and Waterloo-IVC SIQA databases and three indices including PLCC, SROCC and RMSE are employed to evaluate the assessment consistency between StereoIF-Net and the HVS. The proposed StereoIF-Net achieves almost the best results compared with advanced SIQA methods. Specifically, the metric values on LIVE 3D, IVC and WIVC-I are the best, and are the second-best on the WIVC-II.

摘要

在充满立体图像的当代社会中,如何评估 3D 图像的视觉质量引起了立体图像质量评估(SIQA)领域的广泛关注。与 2D-IQA 相比,SIQA 更具挑战性,因为必须考虑人类视觉系统(HVS)的一些复杂特征,例如双眼交互和双眼融合。在本文中,考虑到 HVS 的双眼交互和融合机制,提出了一种分层无参考立体图像质量评估网络(StereoIF-Net),以模拟人类皮层中 3D 视觉信号的整体质量感知,包括两个关键模块:BIM 和 BFM。特别是,构建了双眼交互模块(BIMs)来模拟 V2-V5 视觉皮层区域中的双眼交互,其中设计了新颖的交叉卷积来探索每个区域中的交互细节。在 BIMs 中,设计了不同的输出通道数来模拟 V2-V5 中的各种感受野。此外,提出了一种具有自动学习权重的双眼融合模块(BFM)来模拟 HVS 在更高皮层层中的双眼融合。在 LIVE 3D、IVC 和 Waterloo-IVC SIQA 数据库上进行了验证实验,并采用 PLCC、SROCC 和 RMSE 三个指标来评估 StereoIF-Net 与 HVS 的评估一致性。与先进的 SIQA 方法相比,所提出的 StereoIF-Net 几乎取得了最佳结果。具体来说,在 LIVE 3D、IVC 和 WIVC-I 上的指标值是最好的,在 WIVC-II 上的指标值是第二好的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验