Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.
Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou, China.
Sci Data. 2024 Nov 20;11(1):1251. doi: 10.1038/s41597-024-04113-2.
Ultrawidefield fundus (UWF) images have a wide imaging range (200° of the retinal region), which offers the opportunity to show more information for ophthalmic diseases. Image quality assessment (IQA) is a prerequisite for applying UWF and is crucial for developing artificial intelligence-driven diagnosis and screening systems. Most image quality systems have been applied to the assessments of natural images, but whether these systems are suitable for evaluating the UWF image quality remains debatable. Additionally, existing IQA datasets only provide photographs of diabetic retinopathy (DR) patients and quality evaluation results applicable for natural image, neglecting patients' clinical information. To address these issues, we established a real-world clinical practice ultra-widefield fundus images dataset, with 700 high-resolution UWF images and corresponding clinical information from six common fundus diseases and healthy volunteers. The image quality is annotated by three ophthalmologists based on the field of view, illumination, artifact, contrast, and overall quality. This dataset illustrates the distribution of UWF image quality across diseases in clinical practice, offering a foundation for developing effective IQA systems.
超广角眼底(UWF)图像具有广阔的成像范围(视网膜区域的 200°),为眼科疾病提供了显示更多信息的机会。图像质量评估(IQA)是应用 UWF 的前提,对于开发人工智能驱动的诊断和筛查系统至关重要。大多数图像质量系统已应用于自然图像的评估,但这些系统是否适用于评估 UWF 图像质量仍存在争议。此外,现有的 IQA 数据集仅提供糖尿病视网膜病变(DR)患者的照片和适用于自然图像的质量评估结果,忽略了患者的临床信息。为了解决这些问题,我们建立了一个真实世界临床实践超广角眼底图像数据集,其中包含 700 张来自六种常见眼底疾病和健康志愿者的高分辨率 UWF 图像及其相应的临床信息。图像质量由三位眼科医生根据视野、照明、伪影、对比度和整体质量进行注释。该数据集说明了临床实践中 UWF 图像质量在疾病中的分布情况,为开发有效的 IQA 系统提供了基础。