Suppr超能文献

基于双目协作的无参考立体图像质量评估。

No-reference stereoscopic image quality assessment based on binocular collaboration.

机构信息

Fujian Provincial Key Laboratory of Networking Computing and Intelligent Information Processing, College of Computer and Data Science, Fuzhou University, Fuzhou, 350116, Fujian, China; Engineering Research Center of Big Data Intelligence, Ministry of Education, Fuzhou University, Fuzhou, 350116, China.

Fujian Provincial Key Laboratory of Networking Computing and Intelligent Information Processing, College of Computer and Data Science, Fuzhou University, Fuzhou, 350116, Fujian, China; Engineering Research Center of Big Data Intelligence, Ministry of Education, Fuzhou University, Fuzhou, 350116, China.

出版信息

Neural Netw. 2024 Dec;180:106752. doi: 10.1016/j.neunet.2024.106752. Epub 2024 Sep 24.

Abstract

Stereoscopic images typically consist of left and right views along with depth information. Assessing the quality of stereoscopic/3D images (SIQA) is often more complex than that of 2D images due to scene disparities between the left and right views and the intricate process of fusion in binocular vision. To address the problem of quality prediction bias of multi-distortion images, we investigated the visual physiology and the processing of visual information by the primary visual cortex of the human brain and proposed a no-reference stereoscopic image quality evaluation method. The method mainly includes an innovative end-to-end NR-SIQA neural network with a picture patch generation algorithm. The algorithm generates a saliency map by fusing the left and right views and then guides the image cropping in the database based on the saliency map. The proposed models are validated and compared based on publicly available databases. The results show that the model and algorithm together outperform the state-of-the-art NR-SIQA metric in the LIVE 3D database and the WIVC 3D database, and have excellent results in the specific noise metric. The model generalization experiments demonstrate a certain degree of generality of our proposed model.

摘要

立体图像通常由左右视图以及深度信息组成。由于左右视图之间的场景差异以及双眼视觉中融合的复杂过程,评估立体/3D 图像(SIQA)的质量通常比 2D 图像更为复杂。为了解决多失真图像质量预测偏差的问题,我们研究了人类大脑初级视觉皮层的视觉生理学和视觉信息处理,并提出了一种无参考立体图像质量评估方法。该方法主要包括一种具有图片补丁生成算法的创新端到端 NR-SIQA 神经网络。该算法通过融合左右视图生成显著图,然后根据显著图引导数据库中的图像裁剪。我们基于公开可用的数据库对提出的模型进行了验证和比较。结果表明,该模型和算法在 LIVE 3D 数据库和 WIVC 3D 数据库中的表现优于最先进的 NR-SIQA 指标,并且在特定噪声指标上具有出色的结果。模型泛化实验表明我们提出的模型具有一定的通用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验