Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720.
Department of Neurobiology, Northwestern University, Evanston, Illinois 60208.
J Neurosci. 2022 May 18;42(20):4101-4115. doi: 10.1523/JNEUROSCI.0151-22.2022. Epub 2022 Apr 8.
Aversive responses to bright light (photoaversion) require signaling from the eye to the brain. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) encode absolute light intensity and are thought to provide the light signals for photoaversion. Consistent with this, neonatal mice exhibit photoaversion before the developmental onset of image vision, and melanopsin deletion abolishes photoaversion in neonates. It is not well understood how the population of ipRGCs, which constitutes multiple physiologically distinct types (denoted M1-M6 in mouse), encodes light stimuli to produce an aversive response. Here, we provide several lines of evidence that M1 ipRGCs that lack the Brn3b transcription factor drive photoaversion in neonatal mice. First, neonatal mice lacking TRPC6 and TRPC7 ion channels failed to turn away from bright light, while two photon Ca imaging of their acutely isolated retinas revealed reduced photosensitivity in M1 ipRGCs, but not other ipRGC types. Second, mice in which all ipRGC types except for Brn3b-negative M1 ipRGCs are ablated exhibited normal photoaversion. Third, pharmacological blockade or genetic knockout of gap junction channels expressed by ipRGCs, which reduces the light sensitivity of M2-M6 ipRGCs in the neonatal retina, had small effects on photoaversion only at the brightest light intensities. Finally, M1s were not strongly depolarized by spontaneous retinal waves, a robust source of activity in the developing retina that depolarizes all other ipRGC types. M1s therefore constitute a separate information channel between the neonatal retina and brain that could ensure behavioral responses to light but not spontaneous retinal waves. At an early stage of development, before the maturation of photoreceptor input to the retina, neonatal mice exhibit photoaversion. On exposure to bright light, they turn away and emit ultrasonic vocalizations, a cue to their parents to return them to the nest. Neonatal photoaversion is mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs), a small percentage of the retinal ganglion cell population that express the photopigment melanopsin and depolarize directly in response to light. This study shows that photoaversion is mediated by a subset of ipRGCs, called M1-ipRGCs. Moreover, M1-ipRGCs have reduced responses to retinal waves, providing a mechanism by which the mouse distinguishes light stimulation from developmental patterns of spontaneous activity.
对强光的回避反应(光回避)需要眼睛向大脑发出信号。表达黑视蛋白的光感受器内在神经节细胞(ipRGC)编码绝对光强度,被认为提供了光回避的光信号。与此一致的是,新生小鼠在出现图像视觉之前就表现出光回避,而黑视蛋白缺失则消除了新生小鼠的光回避。目前尚不清楚构成多种生理上不同类型(在小鼠中表示为 M1-M6)的 ipRGC 群体如何编码光刺激以产生回避反应。在这里,我们提供了几条证据表明,缺乏 Brn3b 转录因子的 M1 ipRGC 驱动新生小鼠的光回避。首先,缺乏 TRPC6 和 TRPC7 离子通道的新生小鼠无法远离强光,而对其急性分离的视网膜进行双光子 Ca2+成像显示 M1 ipRGC 的光敏性降低,但其他 ipRGC 类型则没有。其次,除 Brn3b 阴性 M1 ipRGC 之外的所有 ipRGC 类型都被消融的小鼠表现出正常的光回避。第三,ipRGC 表达的缝隙连接通道的药理学阻断或基因敲除,会降低新生视网膜中 M2-M6 ipRGC 的光敏感性,但对光回避的影响仅在最亮的光强度下才有很小的影响。最后,自发视网膜波不能使 M1 强烈去极化,自发视网膜波是发育中视网膜中一种强大的活动源,可使所有其他 ipRGC 类型去极化。因此,M1 构成了新生视网膜和大脑之间的一个单独信息通道,可确保对光的行为反应,但不能确保对自发视网膜波的反应。在发育的早期阶段,在光感受器向视网膜输入成熟之前,新生小鼠就表现出光回避。当暴露于强光下时,它们会转身并发出超声波叫声,这是向其父母发出的返回巢穴的信号。新生鼠的光回避由内在光敏视网膜神经节细胞(ipRGC)介导,ipRGC 是视网膜神经节细胞群体中的一小部分,表达光色素黑视蛋白,并直接对光产生去极化反应。这项研究表明,光回避由称为 M1-ipRGC 的 ipRGC 亚群介导。此外,M1-ipRGC 对视网膜波的反应减弱,为小鼠区分光刺激和发育过程中自发活动模式提供了一种机制。