文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于微环境失衡的脊髓损伤转化研究进展

Progression in translational research on spinal cord injury based on microenvironment imbalance.

作者信息

Fan Baoyou, Wei Zhijian, Feng Shiqing

机构信息

Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, China.

Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.

出版信息

Bone Res. 2022 Apr 8;10(1):35. doi: 10.1038/s41413-022-00199-9.


DOI:10.1038/s41413-022-00199-9
PMID:35396505
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8993811/
Abstract

Spinal cord injury (SCI) leads to loss of motor and sensory function below the injury level and imposes a considerable burden on patients, families, and society. Repair of the injured spinal cord has been recognized as a global medical challenge for many years. Significant progress has been made in research on the pathological mechanism of spinal cord injury. In particular, with the development of gene regulation, cell sequencing, and cell tracing technologies, in-depth explorations of the SCI microenvironment have become more feasible. However, translational studies related to repair of the injured spinal cord have not yielded significant results. This review summarizes the latest research progress on two aspects of SCI pathology: intraneuronal microenvironment imbalance and regenerative microenvironment imbalance. We also review repair strategies for the injured spinal cord based on microenvironment imbalance, including medications, cell transplantation, exosomes, tissue engineering, cell reprogramming, and rehabilitation. The current state of translational research on SCI and future directions are also discussed. The development of a combined, precise, and multitemporal strategy for repairing the injured spinal cord is a potential future direction.

摘要

脊髓损伤(SCI)会导致损伤平面以下运动和感觉功能丧失,给患者、家庭和社会带来相当大的负担。多年来,损伤脊髓的修复一直被视为一项全球性的医学挑战。脊髓损伤病理机制的研究已取得重大进展。特别是,随着基因调控、细胞测序和细胞追踪技术的发展,对脊髓损伤微环境的深入探索变得更加可行。然而,与损伤脊髓修复相关的转化研究尚未取得显著成果。本综述总结了脊髓损伤病理学两个方面的最新研究进展:神经元内微环境失衡和再生微环境失衡。我们还综述了基于微环境失衡的损伤脊髓修复策略,包括药物治疗、细胞移植、外泌体、组织工程、细胞重编程和康复治疗。此外,还讨论了脊髓损伤转化研究的现状和未来方向。开发一种联合、精确和多时段的损伤脊髓修复策略是未来一个潜在的发展方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d56a/8993811/18d8cad7c1c1/41413_2022_199_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d56a/8993811/a5fcdfe3fe80/41413_2022_199_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d56a/8993811/d5b5f4666e92/41413_2022_199_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d56a/8993811/49863ae2563e/41413_2022_199_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d56a/8993811/e5b8a1bb601e/41413_2022_199_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d56a/8993811/81e2f5bd4495/41413_2022_199_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d56a/8993811/18d8cad7c1c1/41413_2022_199_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d56a/8993811/a5fcdfe3fe80/41413_2022_199_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d56a/8993811/d5b5f4666e92/41413_2022_199_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d56a/8993811/49863ae2563e/41413_2022_199_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d56a/8993811/e5b8a1bb601e/41413_2022_199_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d56a/8993811/81e2f5bd4495/41413_2022_199_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d56a/8993811/18d8cad7c1c1/41413_2022_199_Fig6_HTML.jpg

相似文献

[1]
Progression in translational research on spinal cord injury based on microenvironment imbalance.

Bone Res. 2022-4-8

[2]
Functional biomaterials for modulating the dysfunctional pathological microenvironment of spinal cord injury.

Bioact Mater. 2024-5-30

[3]
Exosome-mediated repair of spinal cord injury: a promising therapeutic strategy.

Stem Cell Res Ther. 2024-1-2

[4]
Nanotechnology for the Treatment of Spinal Cord Injury.

Tissue Eng Part B Rev. 2021-8

[5]
Microenvironment Imbalance of Spinal Cord Injury.

Cell Transplant. 2018-6-5

[6]
Repair of the Injured Spinal Cord by Schwann Cell Transplantation.

Front Neurosci. 2022-2-17

[7]
Regenerative rehabilitation with conductive biomaterials for spinal cord injury.

Acta Biomater. 2022-2

[8]
Application and prospects of somatic cell reprogramming technology for spinal cord injury treatment.

Front Cell Neurosci. 2022-11-17

[9]
Biomaterial-supported MSC transplantation enhances cell-cell communication for spinal cord injury.

Stem Cell Res Ther. 2021-1-7

[10]
Astrocyte transplantation for repairing the injured spinal cord.

J Biomed Res. 2022-6-28

引用本文的文献

[1]
Unveiling the Temporal Dynamics and Molecular Regulation Profiles of Neutrophil Extracellular Traps Following Spinal Cord Injury.

J Inflamm Res. 2025-8-6

[2]
Exosomes Derived from Tanshinone IIA-Pretreated Umbilical Cord Mesenchymal Stem Cells Repair Traumatic Spinal Cord Injury by miR-223-5p/USP8/NLRP3 Axis.

ACS Appl Mater Interfaces. 2025-8-13

[3]
Smart responsive biomaterials for spatiotemporal modulation of functional tissue repair.

Mater Today Bio. 2025-7-9

[4]
Phyllanthin from Phyllanthus amarus exerts neuroprotective effects against spinal cord injury in experimental rats.

Arq Neuropsiquiatr. 2025-5

[5]
Exosomes: a promising microenvironment modulator for spinal cord injury treatment.

Int J Biol Sci. 2025-6-5

[6]
Rewiring the Spine-Cutting-Edge Stem Cell Therapies for Spinal Cord Repair.

Int J Mol Sci. 2025-5-23

[7]
Curcumin-loaded polydopamine nanoparticles-based antioxidant scaffold promote spinal cord repair though dural-regulation of macrophage polarization.

Mater Today Bio. 2025-5-23

[8]
GPX4 activator enhances neuroprotection and functional recovery in spinal cord injury.

J Orthop Translat. 2025-5-7

[9]
Ultrasound-driven wireless piezoelectric hydrogel synergizes with cotransplantation of NSCs-hUCMSCs for structural and functional recovery in spinal cord injury.

Mater Today Bio. 2025-4-26

[10]
Buyang Huanwu Decoction Promotes Recovery after Spinal Cord Injury by Regulating cAMP/PKA/NF-κB p65 Pathway.

Chin J Integr Med. 2025-5-15

本文引用的文献

[1]
Revisiting astrocyte to neuron conversion with lineage tracing in vivo.

Cell. 2021-10-14

[2]
RhoA drives actin compaction to restrict axon regeneration and astrocyte reactivity after CNS injury.

Neuron. 2021-11-3

[3]
Hypoxia Response Element-Directed Expression of aFGF in Neural Stem Cells Promotes the Recovery of Spinal Cord Injury and Attenuates SCI-Induced Apoptosis.

Front Cell Dev Biol. 2021-6-14

[4]
M2 Macrophages Promote PDGFRβ Pericytes Migration After Spinal Cord Injury in Mice PDGFB/PDGFRβ Pathway.

Front Pharmacol. 2021-4-15

[5]
3D bioprinted neural tissue constructs for spinal cord injury repair.

Biomaterials. 2021-5

[6]
miR-219 overexpressing oligodendrocyte progenitor cells for treating compression spinal cord injury.

Metab Brain Dis. 2021-6

[7]
Recruitment of upper-limb motoneurons with epidural electrical stimulation of the cervical spinal cord.

Nat Commun. 2021-1-19

[8]
Combined treatment with enteric neural stem cells and chondroitinase ABC reduces spinal cord lesion pathology.

Stem Cell Res Ther. 2021-1-6

[9]
Grafted human induced pluripotent stem cells improve the outcome of spinal cord injury: modulation of the lesion microenvironment.

Sci Rep. 2020-12-29

[10]
Understanding the role of tissue-specific decellularized spinal cord matrix hydrogel for neural stem/progenitor cell microenvironment reconstruction and spinal cord injury.

Biomaterials. 2021-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索