Suppr超能文献

3D 生物打印的神经组织构建体用于脊髓损伤修复。

3D bioprinted neural tissue constructs for spinal cord injury repair.

机构信息

CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.

I-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-tech and Nanobionics, Chinese Academy of Sciences, Suzhou, 215123, China.

出版信息

Biomaterials. 2021 May;272:120771. doi: 10.1016/j.biomaterials.2021.120771. Epub 2021 Mar 25.

Abstract

Three-dimensional (3D) bioprinting has emerged as a promising approach to fabricate living neural constructs with anatomically accurate complex geometries and spatial distributions of neural stem cells (NSCs) for spinal cord injury (SCI) repair. The NSC-laden 3D bioprinting, however, still faces some big challenges, such as cumbersome printing process, poor cell viability, and minimal cell-material interaction. To address these issues, we have fabricated NSC-laden scaffolds by 3D bioprinting and explore for the first time their application for in vivo SCI repair. In our strategy, we have developed a novel biocompatible bioink consisting of functional chitosan, hyaluronic acid derivatives, and matrigel. This bioink shows fast gelation (within 20 s) and spontaneous covalent crosslinking capability, facilitating convenient one-step bioprinting of spinal cord-like constructs. Thus-fabricated scaffolds maintain high NSC viability (about 95%), and offer a benign microenvironment that facilitates cell-material interactions and neuronal differentiation for optimal formation of neural network. The in vivo experiment has further demonstrated that the bioprinted scaffolds promoted the axon regeneration and decreased glial scar deposition, leading to significant locomotor recovery of the SCI model rats, which may represent a general and versatile strategy for precise engineering of central nervous system and other neural organs/tissues for regenerative medicine application.

摘要

三维(3D)生物打印已成为一种很有前途的方法,可以制造具有解剖学准确性的复杂几何形状和神经干细胞(NSC)空间分布的活神经构建体,用于脊髓损伤(SCI)修复。然而,负载 NSC 的 3D 生物打印仍面临一些重大挑战,例如繁琐的打印过程、较差的细胞活力和最小的细胞-材料相互作用。为了解决这些问题,我们通过 3D 生物打印制造了负载 NSC 的支架,并首次探索了它们在体内 SCI 修复中的应用。在我们的策略中,我们开发了一种由功能壳聚糖、透明质酸衍生物和基质胶组成的新型生物相容性生物墨水。这种生物墨水具有快速凝胶化(20 秒内)和自发的共价交联能力,便于方便地一步式生物打印类似脊髓的构建体。制造的支架保持高 NSC 活力(约 95%),并提供良性的微环境,促进细胞-材料相互作用和神经元分化,以最佳形成神经网络。体内实验进一步表明,生物打印的支架促进了轴突再生并减少了神经胶质瘢痕沉积,导致 SCI 模型大鼠的运动功能显著恢复,这可能代表了一种用于再生医学应用的中枢神经系统和其他神经器官/组织的精确工程的通用和多功能策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验