Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China.
Acta Neuropathol Commun. 2024 Feb 8;12(1):24. doi: 10.1186/s40478-024-01720-3.
Myelin sheath abnormality is the cause of various neurodegenerative diseases (NDDs). G-proteins and their coupled receptors (GPCRs) play the important roles in myelination. Gnao1, encoding the major Gα protein (Gαo) in mammalian nerve system, is required for normal motor function. Here, we show that Gnao1 restricted to Schwann cell (SCs) lineage, but not neurons, negatively regulate SC differentiation, myelination, as well as re-myelination in peripheral nervous system (PNS). Mice lacking Gnao1 expression in SCs exhibit faster re-myelination and motor function recovery after nerve injury. Conversely, mice with Gnao1 overexpression in SCs display the insufficient myelinating capacity and delayed re-myelination. In vitro, Gnao1 deletion in SCs promotes SC differentiation. We found that Gnao1 knockdown in SCs resulting in the elevation of cAMP content and the activation of PI3K/AKT pathway, both associated with SC differentiation. The analysis of RNA sequencing data further evidenced that Gnao1 deletion cause the increased expression of myelin-related molecules and activation of regulatory pathways. Taken together, our data indicate that Gnao1 negatively regulated SC differentiation by reducing cAMP level and inhibiting PI3K-AKT cascade activation, identifying a novel drug target for the treatment of demyelinating diseases.
髓鞘异常是各种神经退行性疾病(NDDs)的原因。G 蛋白及其偶联受体(GPCRs)在髓鞘形成中发挥重要作用。编码哺乳动物神经系统中主要 Gα 蛋白(Gαo)的 Gnao1,对于正常的运动功能是必需的。在这里,我们表明 Gnao1 局限于施万细胞(SCs)谱系,但不是神经元,可负向调节周围神经系统(PNS)中的 SC 分化、髓鞘形成和再髓鞘化。SCs 中缺乏 Gnao1 表达的小鼠在神经损伤后表现出更快的再髓鞘化和运动功能恢复。相反,SCs 中 Gnao1 过表达的小鼠表现出髓鞘形成能力不足和再髓鞘化延迟。在体外,SCs 中的 Gnao1 缺失促进 SC 分化。我们发现,SCs 中的 Gnao1 敲低导致 cAMP 含量升高和 PI3K/AKT 通路激活,这两者都与 SC 分化有关。RNA 测序数据的分析进一步证明,Gnao1 缺失导致与髓鞘形成相关的分子表达增加和调节途径激活。总之,我们的数据表明,Gnao1 通过降低 cAMP 水平和抑制 PI3K-AKT 级联激活来负向调节 SC 分化,为脱髓鞘疾病的治疗确定了一个新的药物靶点。