Suppr超能文献

基于多个脑电图振荡特征和稀疏组套索的寿命脑龄预测

Lifespan brain age prediction based on multiple EEG oscillatory features and sparse group lasso.

作者信息

Hu Shiang, Xiang Xue, Huang Xiaolong, Lu Yan, Zhang Xulai, Yao Dezhong, Valdes-Sosa Pedro A

机构信息

Anhui Provincial Key Lab of Multimodal Cognitive Computation, Key Lab of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei, China.

Department of Applied Statistics, Stony Brook Institute at Anhui University, Hefei, China.

出版信息

Front Aging Neurosci. 2025 Jul 22;17:1559067. doi: 10.3389/fnagi.2025.1559067. eCollection 2025.

Abstract

INTRODUCTION

The neural dynamics underlying cognition and behavior change greatly during the lifespan of brain development and aging. EEG is a promising modality due to its high temporal resolution in capturing neural oscillations. Precise prediction of brain age (BA) based on EEG is crucial to screening high-risk individuals from large cohorts. However, the lifespan representation of the EEG oscillatory features (OSFs) is largely unclear, limiting practical BA applications in clinical scenarios. This study aims to build an interpretable BA prediction model through prior knowledge and sparse group lasso.

METHODS

Based on the multinational cross-spectral (MNCS) dataset that covers 5-97 years, (1) we extracted four groups of OSFs, such as aperiodic parameters, periodic parameters, power-ratio, and relative power; (2) the OSFs trajectories evolving with age and the OSF importance topographies were mapped using the generalized additive model for location, scale and shape (GAMLSS) and Pearson's correlation coefficient (PCC); (3) the inter-oscillatory dependency coefficients (ODCs) were extracted by the sparse group lasso; (4) the fusion of OSFs and ODCs was flattened and fed into a three-layer fully connected neural network (FCNN); the FCNN interpretability was analyzed by Layerwise Relevance Propagation and 10-fold cross-validation.

RESULTS

The results showed that the FCNN model that incorporated ODC significantly improved the prediction of BA (MAE = 2.95 years, = 0.86) compared to the use of only OSF (MAE = 3.44 years, = 0.84).

DISCUSSION

In general, this study proposed a BA prediction model named NEOBA by systematically employing OSFs and highlighting the interpretability of the model, which holds broad promise by integrating normative modeling for precise individual stratification.

摘要

引言

在大脑发育和衰老的生命周期中,认知和行为背后的神经动力学变化很大。脑电图(EEG)因其在捕捉神经振荡方面具有高时间分辨率,是一种很有前景的方式。基于EEG精确预测脑龄(BA)对于从大量人群中筛选高危个体至关重要。然而,EEG振荡特征(OSF)在整个生命周期中的表现尚不清楚,这限制了BA在临床场景中的实际应用。本研究旨在通过先验知识和稀疏组套索构建一个可解释的BA预测模型。

方法

基于涵盖5至97岁的多民族交叉谱(MNCS)数据集,(1)我们提取了四组OSF,如非周期性参数、周期性参数、功率比和相对功率;(2)使用位置、尺度和形状的广义相加模型(GAMLSS)和皮尔逊相关系数(PCC)绘制随年龄变化的OSF轨迹和OSF重要性地形图;(3)通过稀疏组套索提取振荡间依赖系数(ODC);(4)将OSF和ODC的融合进行展平并输入到三层全连接神经网络(FCNN)中;通过逐层相关传播和10折交叉验证分析FCNN的可解释性。

结果

结果表明,与仅使用OSF(平均绝对误差=3.44岁,相关系数=0.84)相比,纳入ODC的FCNN模型显著提高了BA预测(平均绝对误差=2.95岁,相关系数=0.86)。

讨论

总体而言,本研究通过系统地采用OSF并突出模型的可解释性,提出了一种名为NEOBA的BA预测模型,该模型通过整合规范建模以实现精确的个体分层,具有广阔的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df18/12321796/ec49d3576c4b/fnagi-17-1559067-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验