Suppr超能文献

社交异质性存在下的传染病传播最优控制。

Optimal control of epidemic spreading in the presence of social heterogeneity.

机构信息

Department of Mathematics and Computer Science, University of Ferrara, Ferrara, Italy.

Department of Mathematics 'F. Casorati', University of Pavia, Pavia, Italy.

出版信息

Philos Trans A Math Phys Eng Sci. 2022 May 30;380(2224):20210160. doi: 10.1098/rsta.2021.0160. Epub 2022 Apr 11.

Abstract

The spread of COVID-19 has been thwarted in most countries through non-pharmaceutical interventions. In particular, the most effective measures in this direction have been the stay-at-home and closure strategies of businesses and schools. However, population-wide lockdowns are far from being optimal, carrying heavy economic consequences. Therefore, there is nowadays a strong interest in designing more efficient restrictions. In this work, starting from a recent kinetic-type model which takes into account the heterogeneity described by the social contact of individuals, we analyse the effects of introducing an optimal control strategy into the system, to limit selectively the mean number of contacts and reduce consequently the number of infected cases. Thanks to a data-driven approach, we show that this new mathematical model permits us to assess the effects of the social limitations. Finally, using the model introduced here and starting from the available data, we show the effectiveness of the proposed selective measures to dampen the epidemic trends. This article is part of the theme issue 'Kinetic exchange models of societies and economies'.

摘要

在大多数国家,非药物干预措施遏制了 COVID-19 的传播。特别是,这方面最有效的措施是居家和关闭企业和学校的策略。然而,全面封锁的代价是巨大的,会带来沉重的经济后果。因此,目前人们强烈希望设计更有效的限制措施。在这项工作中,我们从最近的一个考虑个体社会接触异质性的动力学模型出发,分析了在系统中引入最优控制策略的效果,以有选择地限制平均接触人数,从而减少感染人数。通过一种数据驱动的方法,我们表明这个新的数学模型可以评估社会限制的效果。最后,我们利用这里介绍的模型,并从可用数据出发,展示了所提出的有选择的措施来抑制疫情趋势的有效性。本文是“社会和经济的动力学交换模型”主题的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验