Suppr超能文献

基于计算智能的沙特阿拉伯个体对 SARS-CoV-2 疫苗认知探索模型。

Computational Intelligence-Based Model for Exploring Individual Perception on SARS-CoV-2 Vaccine in Saudi Arabia.

机构信息

Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.

出版信息

Comput Intell Neurosci. 2022 Apr 6;2022:6722427. doi: 10.1155/2022/6722427. eCollection 2022.

Abstract

Countries around the world are facing so many challenges to slow down the spread of the current SARS-CoV-2 virus. Vaccination is an effective way to combat this virus and prevent its spreading among individuals. Currently, there are more than 50 SARS-CoV-2 vaccine candidates in trials; only a few of them are already in use. The primary objective of this study is to analyse the public awareness and opinion toward the vaccination process and to develop a model that predicts the awareness and acceptability of SARS-CoV-2 vaccines in Saudi Arabia by analysing a dataset of Arabic tweets related to vaccination. Therefore, several machine learning models such as Support Vector Machine (SVM), Naïve Bayes (NB), and Logistic Regression (LR), sideways with the N-gram and Term Frequency-Inverse Document Frequency (TF-IDF) techniques for feature extraction and Long Short-Term Memory (LSTM) model used with word embedding. LR with unigram feature extraction has achieved the best accuracy, recall, and 1 score with scores of 0.76, 0.69, and 0.72, respectively. However, the best precision value of 0.80 was achieved using SVM with unigram and NB with bigram TF-IDF. However, the Long Short-Term Memory (LSTM) model outperformed the other models with an accuracy of 0.95, a precision of 0.96, a recall of 0.95, and an 1 score of 0.95. This model will help in gaining a complete idea of how receptive people are to the vaccine. Thus, the government will be able to find new ways and run more campaigns to raise awareness of the importance of the vaccine.

摘要

全球各国都面临着诸多挑战,亟待减缓当前 SARS-CoV-2 病毒的传播速度。接种疫苗是对抗这种病毒并防止其在个体之间传播的有效方法。目前,有超过 50 种 SARS-CoV-2 疫苗候选者正在进行临床试验;其中只有少数几种已经投入使用。本研究的主要目的是分析公众对疫苗接种过程的认识和看法,并通过分析与接种相关的阿拉伯语推文数据集,建立一个预测沙特阿拉伯 SARS-CoV-2 疫苗接种意识和可接受性的模型。因此,我们使用了几种机器学习模型,如支持向量机(SVM)、朴素贝叶斯(NB)和逻辑回归(LR),以及 N 元组和词频逆文档频率(TF-IDF)技术进行特征提取,以及使用词嵌入的长短期记忆(LSTM)模型。LR 结合一元特征提取方法取得了最佳的准确率、召回率和 F1 分数,分别为 0.76、0.69 和 0.72。然而,使用 SVM 结合一元组和 NB 结合二元组 TF-IDF 技术的 SVM 取得了最佳的精度值 0.80。然而,长短期记忆(LSTM)模型的表现优于其他模型,其准确率为 0.95、精度为 0.96、召回率为 0.95 和 F1 分数为 0.95。该模型将有助于全面了解人们对疫苗的接受程度。因此,政府将能够找到新的方法并开展更多的宣传活动,提高人们对疫苗重要性的认识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be76/8984742/509026dd6d8c/CIN2022-6722427.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验