Suppr超能文献

运用LDA主题建模和情感分析探索微博上公众对新冠疫情的反应。

Exploring Public Response to COVID-19 on Weibo with LDA Topic Modeling and Sentiment Analysis.

作者信息

Xie Runbin, Chu Samuel Kai Wah, Chiu Dickson Kak Wah, Wang Yangshu

机构信息

University of Hong Kong, Hong Kong, China.

出版信息

Data Inf Manag. 2021 Jan 1;5(1):86-99. doi: 10.2478/dim-2020-0023. Epub 2022 Mar 31.

Abstract

It is necessary and important to understand public responses to crises, including disease outbreaks. Traditionally, surveys have played an essential role in collecting public opinion, while nowadays, with the increasing popularity of social media, mining social media data serves as another popular tool in opinion mining research. To understand the public response to COVID-19 on Weibo, this research collects 719,570 Weibo posts through a web crawler and analyzes the data with text mining techniques, including Latent Dirichlet Allocation (LDA) topic modeling and sentiment analysis. It is found that, in response to the COVID-19 outbreak, people learn about COVID-19, show their support for frontline warriors, encourage each other spiritually, and, in terms of taking preventive measures, express concerns about economic and life restoration, and so on. Analysis of sentiments and semantic networks further reveals that country media, as well as influential individuals and "self-media," together contribute to the information spread of positive sentiment.

摘要

了解公众对危机(包括疾病爆发)的反应是必要且重要的。传统上,调查在收集公众意见方面发挥了重要作用,而如今,随着社交媒体的日益普及,挖掘社交媒体数据成为舆情挖掘研究中的另一种常用工具。为了解微博上公众对新冠肺炎的反应,本研究通过网络爬虫收集了719,570条微博帖子,并运用文本挖掘技术(包括潜在狄利克雷分配(LDA)主题建模和情感分析)对数据进行分析。研究发现,针对新冠肺炎疫情,人们了解新冠肺炎相关信息,表达对一线抗疫人员的支持,在精神上相互鼓励,并且在采取预防措施方面,表达对经济和生活恢复的担忧等。对情感和语义网络的分析进一步揭示,官方媒体以及有影响力的个人和“自媒体”共同推动了积极情绪的信息传播。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/356d/8975181/0aeb1fe5c3e7/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验