Department of Clinical Sciences Lund, Diagnostic Radiology, Lund University, Skåne University Hospital, Lund, Sweden.
Philips Healthcare, Copenhagen, Denmark.
Magn Reson Med. 2022 Aug;88(2):770-786. doi: 10.1002/mrm.29248. Epub 2022 Apr 10.
Respiration-related CSF flow through the cerebral aqueduct may be useful for elucidating physiology and pathophysiology of the glymphatic system, which has been proposed as a mechanism of brain waste clearance. Therefore, we aimed to (1) develop a real-time (CSF) flow imaging method with high spatial and sufficient temporal resolution to capture respiratory effects, (2) validate the method in a phantom setup and numerical simulations, and (3) apply the method in vivo and quantify its repeatability and correlation with different respiratory conditions.
A golden-angle radial flow sequence (reconstructed temporal resolution 168 ms, spatial resolution 0.6 mm) was implemented on a 7T MRI scanner and reconstructed using compressed sensing. A phantom setup mimicked simultaneous cardiac and respiratory flow oscillations. The effect of temporal resolution and vessel diameter was investigated numerically. Healthy volunteers (n = 10) were scanned at four different respiratory conditions, including repeat scans.
Phantom data show that the developed sequence accurately quantifies respiratory oscillations (ratio real-time/reference Q = 0.96 ± 0.02), but underestimates the rapid cardiac oscillations (ratio Q = 0.46 ± 0.14). Simulations suggest that Q can be improved by increasing temporal resolution. In vivo repeatability was moderate to very strong for cranial and caudal flow (intraclass correlation coefficient range: 0.55-0.99) and weak to strong for net flow (intraclass correlation coefficient range: 0.48-0.90). Net flow was influenced by respiratory condition (p < 0.01).
The presented real-time flow MRI method can quantify respiratory-related variations of CSF flow in the cerebral aqueduct, but it underestimates rapid cardiac oscillations. In vivo, the method showed good repeatability and a relationship between flow and respiration.
通过脑导水管的呼吸相关 CSF 流动可以有助于阐明糖质新生系统的生理学和病理生理学,该系统被认为是大脑废物清除的机制。因此,我们旨在:(1) 开发一种具有高空间和足够时间分辨率的实时(CSF)流动成像方法以捕捉呼吸效应,(2) 在体模设置和数值模拟中验证该方法,以及 (3) 将该方法应用于体内并量化其重复性及其与不同呼吸条件的相关性。
在 7T MRI 扫描仪上实现了黄金角度径向流动序列(重建时间分辨率为 168ms,空间分辨率为 0.6mm),并使用压缩感知进行重建。体模设置模拟了同时的心脏和呼吸流动振荡。数值研究了时间分辨率和血管直径的影响。10 名健康志愿者在四种不同的呼吸条件下进行了扫描,包括重复扫描。
体模数据表明,所开发的序列可以准确地量化呼吸振荡(实时/参考 Q 的比值为 0.96±0.02),但低估了快速的心脏振荡(Q 的比值为 0.46±0.14)。模拟表明,通过增加时间分辨率可以提高 Q 值。对于颅侧和尾侧流动,体内重复性为中等至非常强(组内相关系数范围为 0.55-0.99),对于净流动,重复性为弱至强(组内相关系数范围为 0.48-0.90)。净流动受呼吸条件的影响(p<0.01)。
所提出的实时流动 MRI 方法可以定量测量脑导水管中 CSF 流动的呼吸相关变化,但低估了快速的心脏振荡。在体内,该方法表现出良好的重复性和流动与呼吸之间的关系。