Suppr超能文献

通过壳聚糖盐熔热解制备的用于超级电容器和氧还原催化剂的微孔氮掺杂碳

Microporous N-Doped Carbon Obtained from Salt Melt Pyrolysis of Chitosan toward Supercapacitor and Oxygen Reduction Catalysts.

作者信息

Rybarczyk Maria Krystyna, Cysewska Karolina, Yuksel Recep, Lieder Marek

机构信息

Chemical Faculty, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.

Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.

出版信息

Nanomaterials (Basel). 2022 Mar 31;12(7):1162. doi: 10.3390/nano12071162.

Abstract

The direct carbonization of low-cost and abundant chitosan biopolymer in the presence of salt eutectics leads to highly microporous, N-doped nanostructures. The microporous structure is easily manufactured using eutectic mixture (ZnCl-KCl) and chitosan. Potassium ions here can act as an intercalating agent, leading to the formation of lamellar carbon sheets, whereas zinc chloride generates significant porosity. Here, we present an efficient synthetic way for microporous carbon nanostructures production with a total nitrogen content of 8.7%. Preliminary studies were performed to show the possibility of the use of such material as a catalyst for supercapacitor and ORR. The textural properties enhanced capacitance, which stem from improved accessibility of previously blocked or inactive pores in the carbon structure, leading to the conclusion that porogen salts and molten salt strategies produce materials with tailor-made morphologies. The synergistic effect of the eutectic salt is seen in controlled porous structures and pore size, and the micropores boosting adsorption ability.

摘要

在低共熔盐存在的情况下,低成本且丰富的壳聚糖生物聚合物直接碳化可形成高度微孔的氮掺杂纳米结构。使用低共熔混合物(ZnCl-KCl)和壳聚糖可轻松制造出微孔结构。此处的钾离子可作为插层剂,导致层状碳片的形成,而氯化锌则产生显著的孔隙率。在此,我们展示了一种生产总氮含量为8.7%的微孔碳纳米结构的高效合成方法。进行了初步研究以表明使用这种材料作为超级电容器和氧还原反应催化剂的可能性。结构性质增强了电容,这源于碳结构中先前被阻塞或无活性的孔的可及性提高,从而得出结论:致孔盐和熔盐策略可生产出具有定制形态的材料。低共熔盐的协同效应体现在可控的多孔结构和孔径上,且微孔提高了吸附能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6d0/9000742/d24c9d9d2214/nanomaterials-12-01162-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验