Roy Sayak, Samanta Rajib, Barman Sudip
School of Chemical Sciences National Institute of Science Education and Research (NISER) Bhubaneswar Odisha 752050 India.
Homi Bhabha National Institute (HBNI) 2nd floor, Training School Complex Anushaktinagar Mumbai 400094 India.
Small Sci. 2025 Feb 25;5(4):2400426. doi: 10.1002/smsc.202400426. eCollection 2025 Apr.
Zinc-ion hybrid supercapacitors (ZIHSCs) represent a promising frontier in high-performance energy storage, offering greater energy density characteristic shown by batteries alongside high power yield and extended life of supercapacitors. Carbon materials, due to their inexpensiveness, abundance, and excellent conductivity, have been promising cathode choices for ZIHSCs. However, the application of electrospun carbon nanofibers as cathodes in ZIHSCs remains relatively unexplored. This study describes the synthesis of electrospun porous N-doped carbon (NC)-carbon nanofibers (NC-CNFs) through a carbonization-activation pathway. The NC-CNFs achieves specific surface area (SSA) of 2426.6 mg and a specific capacity of 173.5 mAhg at 0.1 Ag in a ZIHSC setup. A maximum energy density (ED) and power density (PD) of 138.8 Wh kg and 7998.9 W kg, respectively is also obtained. After 10 000 charge-discharge cycles, the device retains 91.7% initial capacitance. Additionally, the charge storage performances of a symmetric supercapacitor (SC) and a ZIHSC, made of NC-CNFs, are compared to prove the superiority of the ZIHSC over SC. This study highlights that incorporating NC into electrospun carbon nanofibers, with potassium hydroxide (KOH) activation, yields a ZIHSC cathode material with an optimal porous 1D morphology, large SSA, optimized nanofiber diameter, and efficient heteroatom doping, leading to excellent electrochemical performance.
锌离子混合超级电容器(ZIHSCs)是高性能储能领域一个很有前景的前沿方向,它兼具电池所具有的较高能量密度特性,以及超级电容器的高功率输出和长寿命特点。碳材料因其价格低廉、储量丰富和优异的导电性,一直是ZIHSCs阴极的理想选择。然而,电纺碳纳米纤维作为ZIHSCs阴极的应用仍相对未被探索。本研究描述了通过碳化-活化途径合成电纺多孔氮掺杂碳(NC)-碳纳米纤维(NC-CNFs)。在ZIHSC装置中,NC-CNFs在0.1 Ag时的比表面积(SSA)达到2426.6 mg,比容量为173.5 mAhg。还分别获得了138.8 Wh kg和7998.9 W kg的最大能量密度(ED)和功率密度(PD)。经过10000次充放电循环后,该器件保留了91.7%的初始电容。此外,还比较了由NC-CNFs制成的对称超级电容器(SC)和ZIHSC的电荷存储性能,以证明ZIHSC相对于SC的优越性。本研究强调,通过氢氧化钾(KOH)活化将NC掺入电纺碳纳米纤维中,可得到一种具有最佳多孔一维形态、大比表面积、优化的纳米纤维直径和高效杂原子掺杂的ZIHSC阴极材料,从而具有优异的电化学性能。