Hofmeister Anne M, Criss Everett M, Criss Robert E
Department of Earth and Planetary Science, Washington University, St. Louis, MO 63130, USA.
H10 Capital, 2401 4th Avenue, Suite 480, Seattle, WA 98121, USA.
Materials (Basel). 2022 Apr 3;15(7):2638. doi: 10.3390/ma15072638.
Available data on insulating, semiconducting, and metallic solids verify our new model that incorporates steady-state heat flow into a macroscopic, thermodynamic description of solids, with agreement being best for isotropic examples. Our model is based on: (1) mass and energy conservation; (2) Fourier's law; (3) Stefan-Boltzmann's law; and (4) rigidity, which is a large, yet heretofore neglected, energy reservoir with no counterpart in gases. To account for rigidity while neglecting dissipation, we consider the ideal, limiting case of a perfectly frictionless elastic solid (PFES) which does not generate heat from stress. Its equation-of-state is independent of the energetics, as in the historic model. We show that pressure-volume work () in a PFES arises from internal interatomic forces, which are linked to Young's modulus (Ξ) and a constant () accounting for cation coordination. Steady-state conditions are adiabatic since heat content () is constant. Because average temperature is also constant and the thermal gradient is fixed in space, conditions are simultaneously isothermal: Under these dual restrictions, thermal transport properties do not enter into our analysis. We find that adiabatic and isothermal bulk moduli () are equal. Moreover, / depends on temperature only. Distinguishing deformation from volume changes elucidates how solids thermally expand. These findings lead to simple descriptions of the two specific heats in solids: ∂ln()/∂ = -1/; = Ξ times thermal expansivity divided by density; = cΞ/. Implications of our validated formulae are briefly covered.
关于绝缘、半导体和金属固体的现有数据验证了我们的新模型,该模型将稳态热流纳入固体的宏观热力学描述中,对于各向同性的例子,一致性最佳。我们的模型基于:(1)质量和能量守恒;(2)傅里叶定律;(3)斯特藩 - 玻尔兹曼定律;以及(4)刚性,这是一个庞大但迄今为止被忽视的能量库,在气体中没有对应物。为了在忽略耗散的情况下考虑刚性,我们考虑理想的、极限情况下的完全无摩擦弹性固体(PFES),它不会因应力产生热量。其状态方程与能量学无关,就像在历史模型中一样。我们表明,PFES 中的压力 - 体积功()源于内部原子间力,这些力与杨氏模量(Ξ)和一个考虑阳离子配位的常数()相关。稳态条件是绝热的,因为热含量()是恒定的。由于平均温度也恒定且热梯度在空间中固定,所以条件同时也是等温的:在这些双重限制下,热传输特性不进入我们的分析。我们发现绝热和等温体积模量()相等。此外,/仅取决于温度。区分变形和体积变化阐明了固体如何热膨胀。这些发现导致了对固体中两种比热的简单描述:∂ln()/∂ = -1/; = Ξ乘以热膨胀系数除以密度; = cΞ/。我们简要介绍了经过验证的公式的含义。