Suppr超能文献

基于机器学习的液压系统物联网传感器数据特征提取异常检测。

Anomaly Detection with Feature Extraction Based on Machine Learning Using Hydraulic System IoT Sensor Data.

机构信息

Department of Information & Statistics, Chungbuk National University, Cheongju 28644, Korea.

出版信息

Sensors (Basel). 2022 Mar 23;22(7):2479. doi: 10.3390/s22072479.

Abstract

Hydraulic systems are advanced in function and level as they are used in various industrial fields. Furthermore, condition monitoring using internet of things (IoT) sensors is applied for system maintenance and management. In this study, meaningful features were identified through extraction and selection of various features, and classification evaluation metrics were presented through machine learning and deep learning to expand the diagnosis of abnormalities and defects in each component of the hydraulic system. Data collected from IoT sensor data in the time domain were divided into clusters in predefined sections. The shape and density characteristics were extracted by cluster. Among 2335 newly extracted features, related features were selected using correlation coefficients and the Boruta algorithm for each hydraulic component and used for model learning. Linear discriminant analysis (LDA), logistic regression, support vector classifier (SVC), decision tree, random forest, XGBoost, LightGBM, and multi-layer perceptron were used to calculate the true positive rate (TPR) and true negative rate (TNR) for each hydraulic component to detect normal and abnormal conditions. Valve condition, internal pump leakage, and hydraulic accumulator data showed TPR performance of 0.94 or more and a TNR performance of 0.84 or more. This study's findings can help to determine the stable and unstable states of each component of the hydraulic system and form the basis for engineers' judgment.

摘要

液压系统在各种工业领域中得到了广泛应用,其功能和水平也得到了不断提升。此外,物联网(IoT)传感器的状态监测也被应用于系统维护和管理。在本研究中,通过对各种特征的提取和选择,确定了有意义的特征,并通过机器学习和深度学习提出了分类评估指标,以扩展对液压系统各个组件异常和缺陷的诊断。从物联网传感器数据中采集到的时域数据被划分为预定义部分的聚类。通过聚类提取形状和密度特征。在新提取的 2335 个特征中,使用相关系数和 Boruta 算法为每个液压组件选择相关特征,并用于模型学习。使用线性判别分析(LDA)、逻辑回归、支持向量分类器(SVC)、决策树、随机森林、XGBoost、LightGBM 和多层感知机来计算每个液压组件的正常和异常条件的真阳性率(TPR)和真阴性率(TNR)。阀状况、内部泵泄漏和液压蓄能器数据的 TPR 性能达到 0.94 或更高,TNR 性能达到 0.84 或更高。本研究的结果可以帮助确定液压系统各组件的稳定和不稳定状态,为工程师的判断提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e710/9003148/da113d87e807/sensors-22-02479-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验