Mathematics and Computer Science Department, University of Ahmed DRAIA, 01000 Adrar, Algeria.
LDDI Laboratory, Faculty of Science and Technology, University of Ahmed DRAIA, 01000 Adrar, Algeria.
Comput Intell Neurosci. 2022 Jun 2;2022:6473507. doi: 10.1155/2022/6473507. eCollection 2022.
This study proposes a novel framework to improve intrusion detection system (IDS) performance based on the data collected from the Internet of things (IoT) environments. The developed framework relies on deep learning and metaheuristic (MH) optimization algorithms to perform feature extraction and selection. A simple yet effective convolutional neural network (CNN) is implemented as the core feature extractor of the framework to learn better and more relevant representations of the input data in a lower-dimensional space. A new feature selection mechanism is proposed based on a recently developed MH method, called Reptile Search Algorithm (RSA), which is inspired by the hunting behaviors of the crocodiles. The RSA boosts the IDS system performance by selecting only the most important features (an optimal subset of features) from the extracted features using the CNN model. Several datasets, including KDDCup-99, NSL-KDD, CICIDS-2017, and BoT-IoT, were used to assess the IDS system performance. The proposed framework achieved competitive performance in classification metrics compared to other well-known optimization methods applied for feature selection problems.
本研究提出了一种基于物联网 (IoT) 环境中收集的数据来提高入侵检测系统 (IDS) 性能的新框架。该框架依赖于深度学习和元启发式 (MH) 优化算法来执行特征提取和选择。实现了一个简单而有效的卷积神经网络 (CNN) 作为框架的核心特征提取器,以便在较低维度的空间中更好地学习输入数据的更相关表示。基于最近开发的 MH 方法——Reptile Search Algorithm (RSA),提出了一种新的特征选择机制,该方法受到鳄鱼狩猎行为的启发。RSA 通过使用 CNN 模型从提取的特征中选择最重要的特征(特征的最优子集),从而提高了 IDS 系统的性能。使用了包括 KDDCup-99、NSL-KDD、CICIDS-2017 和 BoT-IoT 在内的多个数据集来评估 IDS 系统的性能。与应用于特征选择问题的其他著名优化方法相比,所提出的框架在分类指标方面实现了有竞争力的性能。