Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
Department of Mathematical Modeling and Numerical Analysis, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
Molecules. 2022 Mar 24;27(7):2084. doi: 10.3390/molecules27072084.
Quantitative structure-activity relationships (QSAR) are a widely used methodology allowing not only a better understanding of the mechanisms of chemical reactions, including radical scavenging, but also to predict the relevant properties of chemical compounds without their synthesis, isolation and experimental testing. Unlike the QSAR modeling of the kinetic antioxidant assays, modeling of the assays with stoichiometric endpoints depends strongly on the number of hydroxyl groups in the antioxidant molecule, as well as on some integral molecular descriptors characterizing the proportion of OH-groups able to enter and complete the radical scavenging reaction. In this work, we tested the feasibility of a "hybrid" classification/regression approach, consisting of explicit classification of individual OH-groups as involved in radical scavenging reactions, and using further the number of these OH-groups as a descriptor in simple-regression QSAR models of antiradical capacity assays with stoichiometric endpoints. A simple threshold classification based on the sum of trolox-equivalent antiradical capacity values was used, selecting OH-groups with specific radical stability- and reactivity-related electronic parameters or their combination as "active" or "inactive". We showed that this classification/regression modeling approach provides a substantial improvement of the simple-regression QSAR models over those built on the number of total phenolic OH-groups only, and yields a statistical performance similar to that of the best reported multiple-regression QSARs for antiradical capacity assays with stoichiometric endpoints.
定量构效关系(QSAR)是一种广泛应用的方法,不仅可以更好地理解化学反应的机制,包括自由基清除,还可以预测化学化合物的相关性质,而无需合成、分离和实验测试。与动力学抗氧化测定的 QSAR 建模不同,具有化学计量终点的测定的建模强烈依赖于抗氧化分子中的羟基数量,以及一些积分分子描述符,这些描述符表征了能够进入并完成自由基清除反应的 OH 基团的比例。在这项工作中,我们测试了一种“混合”分类/回归方法的可行性,该方法由对单个 OH 基团是否参与自由基清除反应进行明确分类组成,并进一步将这些 OH 基团的数量用作具有化学计量终点的抗自由基能力测定的简单回归 QSAR 模型中的描述符。使用基于 trolox 当量抗自由基能力值之和的简单阈值分类,选择具有特定自由基稳定性和反应性相关电子参数或其组合的 OH 基团作为“活性”或“非活性”。我们表明,这种分类/回归建模方法相对于仅基于总酚 OH 基团数量的简单回归 QSAR 模型提供了实质性的改进,并产生了与具有化学计量终点的抗自由基能力测定的最佳报道的多元回归 QSAR 相似的统计性能。