Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
Int J Mol Sci. 2022 Apr 6;23(7):4053. doi: 10.3390/ijms23074053.
Long-QT syndrome type 1 (LQT1) is caused by mutations in . Patients heterozygous for such a mutation co-assemble both mutant and wild-type -encoded subunits into tetrameric Kv7.1 potassium channels. Here, we investigated whether allele-specific inhibition of mutant by targeting a common variant can shift the balance towards increased incorporation of the wild-type allele to alleviate the disease in human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs). We identified the single nucleotide polymorphisms (SNP) rs1057128 (G/A) in , with a heterozygosity of 27% in the European population. Next, we determined allele-specificity of short-hairpin RNAs (shRNAs) targeting either allele of this SNP in hiPSC-CMs that carry an LQT1 mutation. Our shRNAs downregulated 60% of the A allele and 40% of the G allele without affecting the non-targeted allele. Suppression of the mutant allele by 60% decreased the occurrence of arrhythmic events in hiPSC-CMs measured by a voltage-sensitive reporter, while suppression of the wild-type allele increased the occurrence of arrhythmic events. Furthermore, computer simulations based on another LQT1 mutation revealed that 60% suppression of the mutant allele shortens the prolonged action potential in an adult cardiomyocyte model. We conclude that allele-specific inhibition of a mutant allele by targeting a common variant may alleviate the disease. This novel approach avoids the need to design shRNAs to target every single mutation and opens up the exciting possibility of treating multiple LQT1-causing mutations with only two shRNAs.
长 QT 综合征 1 型(LQT1)是由基因突变引起的。携带这种突变的杂合子会将突变型和野生型编码的亚基共同组装成四聚体 Kv7.1 钾通道。在这里,我们研究了通过针对共同变异体来抑制突变等位基因的等位基因特异性,是否可以改变平衡,增加野生型等位基因的表达,从而减轻人类诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)中的疾病。我们确定了 中的单核苷酸多态性(SNP)rs1057128(G/A),在欧洲人群中的杂合率为 27%。接下来,我们确定了在携带 LQT1 突变的 hiPSC-CMs 中靶向该 SNP 的两种等位基因的短发夹 RNA(shRNA)的等位基因特异性。我们的 shRNA 下调了 60%的 A 等位基因和 40%的 G 等位基因,而不影响非靶向等位基因。突变型 等位基因抑制 60%可减少通过电压敏感报告器测量的 hiPSC-CMs 中心律失常事件的发生,而野生型等位基因抑制则增加心律失常事件的发生。此外,基于另一种 LQT1 突变的计算机模拟表明,突变型 等位基因抑制 60%可缩短成人心肌细胞模型中延长的动作电位。我们的结论是,通过针对共同变异体来抑制突变型 等位基因的等位基因特异性可能会减轻疾病。这种新方法避免了设计靶向每个单独突变的 shRNA 的需要,并为仅用两种 shRNA 治疗多种 LQT1 引起的突变开辟了令人兴奋的可能性。