Radhakrishnan Adityanarayanan, Ruiz Luyten Max, Prasad Neha, Uhler Caroline
Massachusetts Institute of Technology, Cambridge, MA, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Nat Commun. 2023 Sep 9;14(1):5570. doi: 10.1038/s41467-023-41215-8.
Transfer learning refers to the process of adapting a model trained on a source task to a target task. While kernel methods are conceptually and computationally simple models that are competitive on a variety of tasks, it has been unclear how to develop scalable kernel-based transfer learning methods across general source and target tasks with possibly differing label dimensions. In this work, we propose a transfer learning framework for kernel methods by projecting and translating the source model to the target task. We demonstrate the effectiveness of our framework in applications to image classification and virtual drug screening. For both applications, we identify simple scaling laws that characterize the performance of transfer-learned kernels as a function of the number of target examples. We explain this phenomenon in a simplified linear setting, where we are able to derive the exact scaling laws.
迁移学习是指将在源任务上训练的模型应用于目标任务的过程。虽然核方法在概念和计算上都是简单的模型,并且在各种任务中具有竞争力,但尚不清楚如何在可能具有不同标签维度的一般源任务和目标任务中开发基于核的可扩展迁移学习方法。在这项工作中,我们通过将源模型投影并转换到目标任务,为核方法提出了一个迁移学习框架。我们展示了我们的框架在图像分类和虚拟药物筛选应用中的有效性。对于这两个应用,我们确定了简单的缩放定律,这些定律将迁移学习核的性能表征为目标示例数量的函数。我们在简化的线性设置中解释了这种现象,在这种设置中我们能够推导出精确的缩放定律。