Suppr超能文献

用于气球模拟风险任务的新型计算模型的开发:指数加权均值-方差模型。

Development of a novel computational model for the Balloon Analogue Risk Task: The Exponential-Weight Mean-Variance Model.

作者信息

Park Harhim, Yang Jaeyeong, Vassileva Jasmin, Ahn Woo-Young

机构信息

Department of Psychology, Seoul National University, Seoul, Korea.

Department of Psychiatry, Virginia Commonwealth University, Virginia, United States of America.

出版信息

J Math Psychol. 2021 Jun;102. doi: 10.1016/j.jmp.2021.102532. Epub 2021 Apr 21.

Abstract

The Balloon Analogue Risk Task (BART) is a popular task used to measure risk-taking behavior. To identify cognitive processes associated with choice behavior on the BART, a few computational models have been proposed. However, the extant models either fail to capture choice patterns on the BART or show poor parameter recovery performance. Here, we propose a novel computational model, the exponential-weight mean-variance (EWMV) model, which addresses the limitations of existing models. By using multiple model comparison methods, including post hoc model fits criterion and parameter recovery, we showed that the EWMV model outperforms the existing models. In addition, we applied the EWMV model to BART data from healthy controls and substance-using populations (patients with past opiate and stimulant dependence). The results suggest that (1) the EWMV model addresses the limitations of existing models and (2) heroin-dependent individuals show reduced risk preference than other groups, which may have significant clinical implications.

摘要

气球模拟风险任务(BART)是一种用于测量冒险行为的常用任务。为了识别与BART上的选择行为相关的认知过程,已经提出了一些计算模型。然而,现有的模型要么无法捕捉BART上的选择模式,要么表现出较差的参数恢复性能。在这里,我们提出了一种新的计算模型,即指数加权均值 - 方差(EWMV)模型,它解决了现有模型的局限性。通过使用多种模型比较方法,包括事后模型拟合标准和参数恢复,我们表明EWMV模型优于现有模型。此外,我们将EWMV模型应用于来自健康对照组和物质使用人群(过去有阿片类药物和兴奋剂依赖的患者)的BART数据。结果表明:(1)EWMV模型解决了现有模型的局限性;(2)海洛因依赖个体比其他组表现出更低的风险偏好,这可能具有重要的临床意义。

相似文献

3
Stressed individuals exhibit pessimistic bursting beliefs and a lower risk preference in the balloon analogue risk task.
Physiol Behav. 2022 Nov 1;256:113953. doi: 10.1016/j.physbeh.2022.113953. Epub 2022 Aug 27.
4
The scaled target learning model: Revisiting learning in the balloon analogue risk task.
Cogn Psychol. 2021 Aug;128:101407. doi: 10.1016/j.cogpsych.2021.101407. Epub 2021 Jul 2.
5
A new look at risk-taking: using a translational approach to examine risk-taking behavior on the balloon analogue risk task.
Exp Clin Psychopharmacol. 2014 Oct;22(5):444-52. doi: 10.1037/a0037421. Epub 2014 Jul 28.
6
Preliminary evidence for normalization of risk taking by modafinil in chronic cocaine users.
Addict Behav. 2014 Jun;39(6):1057-61. doi: 10.1016/j.addbeh.2014.02.015. Epub 2014 Mar 3.
7
Neural correlates of voluntary and involuntary risk taking in the human brain: an fMRI Study of the Balloon Analog Risk Task (BART).
Neuroimage. 2008 Aug 15;42(2):902-10. doi: 10.1016/j.neuroimage.2008.05.046. Epub 2008 Jun 3.
10
A computational model of the Cambridge gambling task with applications to substance use disorders.
Drug Alcohol Depend. 2020 Jan 1;206:107711. doi: 10.1016/j.drugalcdep.2019.107711. Epub 2019 Nov 3.

引用本文的文献

2
Methamphetamine related cues impact impulsive choice by decreasing loss aversion.
BMC Psychiatry. 2025 May 26;25(1):548. doi: 10.1186/s12888-025-06999-7.
3
Social and non-social risk-taking in adolescence.
Sci Rep. 2025 Feb 26;15(1):6880. doi: 10.1038/s41598-025-90050-y.
6
The Neurocomputational Mechanism Underlying Decision-Making on Unfairness to Self and Others.
Neurosci Bull. 2024 Oct;40(10):1471-1488. doi: 10.1007/s12264-024-01245-8. Epub 2024 Jun 20.
7
Catastrophizing and Risk-Taking.
Comput Psychiatr. 2023 Jan 17;7(1):1-13. doi: 10.5334/cpsy.91. eCollection 2023.
8
Greater Risk Taking in Cosmetic Surgery Acceptance and History: An Experimental and Computational Study.
Aesthetic Plast Surg. 2024 Jul;48(13):2561-2572. doi: 10.1007/s00266-024-03910-9. Epub 2024 Mar 21.
9
Body appearance values modulate risk aversion in eating restriction.
J Exp Psychol Gen. 2023 Dec;152(12):3418-3432. doi: 10.1037/xge0001445. Epub 2023 Sep 28.
10
Neurocomputational Substrates Underlying the Effect of Identifiability on Third-Party Punishment.
J Neurosci. 2023 Nov 22;43(47):8018-8031. doi: 10.1523/JNEUROSCI.0460-23.2023.

本文引用的文献

1
Stan: A Probabilistic Programming Language.
J Stat Softw. 2017;76. doi: 10.18637/jss.v076.i01. Epub 2017 Jan 11.
2
The Outcome-Representation Learning Model: A Novel Reinforcement Learning Model of the Iowa Gambling Task.
Cogn Sci. 2018 Nov;42(8):2534-2561. doi: 10.1111/cogs.12688. Epub 2018 Oct 5.
3
Revealing Neurocomputational Mechanisms of Reinforcement Learning and Decision-Making With the hBayesDM Package.
Comput Psychiatr. 2017 Oct 1;1:24-57. doi: 10.1162/CPSY_a_00002. eCollection 2017 Oct.
4
Risk preference shares the psychometric structure of major psychological traits.
Sci Adv. 2017 Oct 4;3(10):e1701381. doi: 10.1126/sciadv.1701381. eCollection 2017 Oct.
5
Machine-learning identifies substance-specific behavioral markers for opiate and stimulant dependence.
Drug Alcohol Depend. 2016 Apr 1;161:247-57. doi: 10.1016/j.drugalcdep.2016.02.008. Epub 2016 Feb 15.
6
Computational modeling for addiction medicine: From cognitive models to clinical applications.
Prog Brain Res. 2016;224:53-65. doi: 10.1016/bs.pbr.2015.07.032. Epub 2015 Nov 4.
9
Decomposing the roles of perseveration and expected value representation in models of the Iowa gambling task.
Front Psychol. 2013 Sep 30;4:640. doi: 10.3389/fpsyg.2013.00640. eCollection 2013.
10
A Model-Based fMRI Analysis with Hierarchical Bayesian Parameter Estimation.
J Neurosci Psychol Econ. 2011 May;4(2):95-110. doi: 10.1037/a0020684.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验