Indiana University Bloomington, Psychological and Brain Sciences, 1101 E 10thSt., Bloomington, IN, 47405, USA.
The Ohio State University, Psychology Department, 1835 Neil Avenue, Columbus, OH, 43210, USA.
Drug Alcohol Depend. 2020 Jan 1;206:107711. doi: 10.1016/j.drugalcdep.2019.107711. Epub 2019 Nov 3.
Impulsivity is central to all forms of externalizing psychopathology, including problematic substance use. The Cambridge Gambling task (CGT) is a popular neurocognitive task used to assess impulsivity in both clinical and healthy populations. However, the traditional methods of analysis in the CGT do not fully capture the multiple cognitive mechanisms that give rise to impulsive behavior, which can lead to underpowered and difficult-to-interpret behavioral measures.
The current study presents the cognitive modeling approach as an alternative to traditional methods and assesses predictive and convergent validity across and between approaches.
We used hierarchical Bayesian modeling to fit a series of cognitive models to data from healthy controls (N = 124) and individuals with histories of substance use disorders (Heroin: N = 79; Amphetamine: N = 76; Polysubstance: N = 103; final total across groups N = 382). Using Bayesian model comparison, we identified the best fitting model, which was then used to identify differences in cognitive model parameters between groups.
The cognitive modeling approach revealed differences in quality of decision making and impulsivity between controls and individuals with substance use disorders that traditional methods alone did not detect. Crucially, convergent validity between traditional measures and cognitive model parameters was strong across all groups.
The cognitive modeling approach is a viable method of measuring the latent mechanisms that give rise to choice behavior in the CGT, which allows for stronger statistical inferences and a better understanding of impulsive and risk-seeking behavior.
冲动是所有外化性精神病理学的核心,包括有问题的物质使用。剑桥赌博任务(CGT)是一种广泛用于评估临床和健康人群冲动性的神经认知任务。然而,CGT 中的传统分析方法并没有完全捕捉到导致冲动行为的多种认知机制,这可能导致行为测量的功效不足且难以解释。
本研究提出认知建模方法作为传统方法的替代方法,并评估了不同方法之间的预测和收敛效度。
我们使用分层贝叶斯建模来拟合一系列认知模型,这些模型的数据来自健康对照组(N=124)和物质使用障碍史个体(海洛因:N=79;安非他命:N=76;多物质:N=103;最终跨组 N=382)。使用贝叶斯模型比较,我们确定了最佳拟合模型,然后使用该模型来确定组间认知模型参数的差异。
认知建模方法揭示了对照组和物质使用障碍个体之间在决策质量和冲动性方面的差异,而传统方法单独无法检测到这些差异。至关重要的是,传统测量和认知模型参数之间的收敛效度在所有组中都很强。
认知建模方法是测量 CGT 中导致选择行为的潜在机制的可行方法,它允许进行更强有力的统计推断,并更好地理解冲动和冒险行为。