Suppr超能文献

Non-invasively predicting response to neoadjuvant chemotherapy in gastric cancer via deep learning radiomics.

作者信息

Fang Mengjie, Tian Jie, Dong Di

机构信息

School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.

CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, No.95 Zhongguancun East Road, Beijing 100190, China.

出版信息

EClinicalMedicine. 2022 Apr 7;46:101380. doi: 10.1016/j.eclinm.2022.101380. eCollection 2022 Apr.

Abstract
摘要

相似文献

1
Non-invasively predicting response to neoadjuvant chemotherapy in gastric cancer via deep learning radiomics.
EClinicalMedicine. 2022 Apr 7;46:101380. doi: 10.1016/j.eclinm.2022.101380. eCollection 2022 Apr.
7
Multi-center evaluation of artificial intelligent imaging and clinical models for predicting neoadjuvant chemotherapy response in breast cancer.
Breast Cancer Res Treat. 2022 May;193(1):121-138. doi: 10.1007/s10549-022-06521-7. Epub 2022 Mar 9.

本文引用的文献

2
Advanced gastric cancer: CT radiomics prediction and early detection of downstaging with neoadjuvant chemotherapy.
Eur Radiol. 2021 Nov;31(11):8765-8774. doi: 10.1007/s00330-021-07962-2. Epub 2021 Apr 28.
3
Identifying early gastric cancer under magnifying narrow-band images with deep learning: a multicenter study.
Gastrointest Endosc. 2021 Jun;93(6):1333-1341.e3. doi: 10.1016/j.gie.2020.11.014. Epub 2020 Nov 26.
4
Gastric cancer.
Lancet. 2020 Aug 29;396(10251):635-648. doi: 10.1016/S0140-6736(20)31288-5.
6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验