Suppr超能文献

晚期胃癌:CT 放射组学预测及新辅助化疗降期的早期检测。

Advanced gastric cancer: CT radiomics prediction and early detection of downstaging with neoadjuvant chemotherapy.

机构信息

Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China.

Deepwise AI Lab, Deepwise Inc., No. 8 Haidian avenue, Sinosteel International Plaza, Beijing, 100080, China.

出版信息

Eur Radiol. 2021 Nov;31(11):8765-8774. doi: 10.1007/s00330-021-07962-2. Epub 2021 Apr 28.

Abstract

OBJECTIVES

To develop and evaluate machine learning models using baseline and restaging computed tomography (CT) for predicting and early detecting pathological downstaging (pDS) with neoadjuvant chemotherapy in advanced gastric cancer (AGC).

METHODS

We collected 292 AGC patients who received neoadjuvant chemotherapy. They were classified into (a) primary cohort (206 patients with 3-4 cycles chemotherapy) for model development and internal validation, (b) testing cohort I (46 patients with 3-4 cycles chemotherapy) for evaluating models' predictive ability before and after the complete course, and (c) testing cohort II (n = 40) for model evaluation on its performance at early treatment. We extracted 1,231 radiomics features from venous phase CT at baseline and restaging. We selected radiomics models based on 28 cross-combination models and measured the areas under the curve (AUC). Our prediction radiomics (PR) model is designed to predict pDS outcomes using baseline CT. Detection radiomics (DR) model is applied to restaging CT for early pDS detection.

RESULTS

PR model achieved promising outcomes in two testing cohorts (AUC 0.750, p = .009 and AUC 0.889, p = .000). DR model also showed a good predictive ability (AUC 0.922, p = .000 and AUC 0.850, p = .000), outperforming the commonly used RECIST method (NRI 39.5% and NRI 35.4%). Furthermore, the improved DR model with averaging outcome scores of PR and DR models showed boosted results in two testing cohorts (AUC 0.961, p = .000 and AUC 0.921, p = .000).

CONCLUSIONS

CT-based radiomics models perform well on prediction and early detection tasks of pDS and can potentially assist surgical decision-making in AGC patients.

KEY POINTS

• Baseline contrast-enhanced computed tomography (CECT)-based radiomics features were predictive of pathological downstaging, allowing accurate identification of non-responders before therapy. • Restaging CECT-based radiomics features were predictive to achieve pDS after and even at an early stage of neoadjuvant chemotherapy. • Combination of baseline and restaging CECT-based radiomics features was promising for early detection and preoperative evaluation of pathological downstaging of AGC.

摘要

目的

利用基线和再分期计算机断层扫描(CT)开发和评估机器学习模型,以预测和早期检测新辅助化疗治疗晚期胃癌(AGC)的病理性降期(pDS)。

方法

我们收集了 292 名接受新辅助化疗的 AGC 患者。他们被分为(a)主要队列(206 名接受 3-4 个周期化疗的患者)用于模型开发和内部验证,(b)测试队列 I(46 名接受 3-4 个周期化疗的患者)用于评估完全疗程前后模型的预测能力,以及(c)测试队列 II(n=40)用于评估模型在早期治疗中的表现。我们从基线和再分期的静脉期 CT 中提取了 1231 个放射组学特征。我们基于 28 个交叉组合模型选择放射组学模型,并测量曲线下面积(AUC)。我们的预测放射组学(PR)模型旨在使用基线 CT 预测 pDS 结果。检测放射组学(DR)模型应用于再分期 CT 以早期检测 pDS。

结果

PR 模型在两个测试队列中均取得了有前景的结果(AUC 0.750,p=0.009 和 AUC 0.889,p=0.000)。DR 模型也表现出良好的预测能力(AUC 0.922,p=0.000 和 AUC 0.850,p=0.000),优于常用的 RECIST 方法(NRI 39.5%和 NRI 35.4%)。此外,与 PR 和 DR 模型的平均结果评分相结合的改进 DR 模型在两个测试队列中均取得了更好的结果(AUC 0.961,p=0.000 和 AUC 0.921,p=0.000)。

结论

基于 CT 的放射组学模型在预测和早期检测 pDS 方面表现良好,可能有助于 AGC 患者的手术决策。

关键要点

  • 基线增强 CT 基放射组学特征可预测病理性降期,使患者在治疗前能准确识别无反应者。

  • 再分期 CT 基放射组学特征可预测治疗后甚至在新辅助化疗早期发生 pDS。

  • 基线和再分期 CT 基放射组学特征的组合有望实现 AGC 患者的早期检测和术前病理性降期评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef4d/8523390/06f616cec49d/330_2021_7962_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验