Suppr超能文献

比较诊断准确性研究中的盲法样本量重新估计

Blinded sample size re-estimation in a comparative diagnostic accuracy study.

作者信息

Stark Maria, Hesse Mailin, Brannath Werner, Zapf Antonia

机构信息

University Medical Center Hamburg-Eppendorf, Institute of Medical Biometry and Epidemiology, Martinistr. 52, 20246, Hamburg, Germany.

Abbott GmbH, Wiesbaden, Germany.

出版信息

BMC Med Res Methodol. 2022 Apr 19;22(1):115. doi: 10.1186/s12874-022-01564-2.

Abstract

BACKGROUND

The sample size calculation in a confirmatory diagnostic accuracy study is performed for co-primary endpoints because sensitivity and specificity are considered simultaneously. The initial sample size calculation in an unpaired and paired diagnostic study is based on assumptions about, among others, the prevalence of the disease and, in the paired design, the proportion of discordant test results between the experimental and the comparator test. The choice of the power for the individual endpoints impacts the sample size and overall power. Uncertain assumptions about the nuisance parameters can additionally affect the sample size.

METHODS

We develop an optimal sample size calculation considering co-primary endpoints to avoid an overpowered study in the unpaired and paired design. To adjust assumptions about the nuisance parameters during the study period, we introduce a blinded adaptive design for sample size re-estimation for the unpaired and the paired study design. A simulation study compares the adaptive design to the fixed design. For the paired design, the new approach is compared to an existing approach using an example study.

RESULTS

Due to blinding, the adaptive design does not inflate type I error rates. The adaptive design reaches the target power and re-estimates nuisance parameters without any relevant bias. Compared to the existing approach, the proposed methods lead to a smaller sample size.

CONCLUSIONS

We recommend the application of the optimal sample size calculation and a blinded adaptive design in a confirmatory diagnostic accuracy study. They compensate inefficiencies of the sample size calculation and support to reach the study aim.

摘要

背景

在确证性诊断准确性研究中,由于同时考虑敏感性和特异性,因此针对共同主要终点进行样本量计算。在非配对和配对诊断研究中,初始样本量计算基于多种假设,包括疾病的患病率,以及在配对设计中,实验检测与对照检测之间不一致检测结果的比例。单个终点检验效能的选择会影响样本量和总体检验效能。关于干扰参数的不确定假设会额外影响样本量。

方法

我们开发了一种考虑共同主要终点的最优样本量计算方法,以避免在非配对和配对设计中出现检验效能过高的研究。为了在研究期间调整关于干扰参数的假设,我们引入了一种用于非配对和配对研究设计的样本量重新估计的盲法自适应设计。一项模拟研究将自适应设计与固定设计进行了比较。对于配对设计,使用一个实例研究将新方法与现有方法进行了比较。

结果

由于采用了盲法,自适应设计不会使I型错误率膨胀。自适应设计达到了目标检验效能,并且在无任何相关偏差的情况下重新估计了干扰参数。与现有方法相比,所提出的方法导致样本量更小。

结论

我们建议在确证性诊断准确性研究中应用最优样本量计算和盲法自适应设计。它们弥补了样本量计算的低效性,并有助于实现研究目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0f7/9019976/88af20fa7347/12874_2022_1564_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验