Suppr超能文献

癫痫预测:我们处于什么位置?

Seizure forecasting: Where do we stand?

机构信息

Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.

Department of Neurology, Yale University, New Haven, Connecticut, USA.

出版信息

Epilepsia. 2023 Dec;64 Suppl 3(Suppl 3):S62-S71. doi: 10.1111/epi.17546. Epub 2023 Mar 8.

Abstract

A lot of mileage has been made recently on the long and winding road toward seizure forecasting. Here we briefly review some selected milestones passed along the way, which were discussed at the International Conference for Technology and Analysis of Seizures-ICTALS 2022-convened at the University of Bern, Switzerland. Major impetus was gained recently from wearable and implantable devices that record not only electroencephalography, but also data on motor behavior, acoustic signals, and various signals of the autonomic nervous system. This multimodal monitoring can be performed for ultralong timescales covering months or years. Accordingly, features and metrics extracted from these data now assess seizure dynamics with a greater degree of completeness. Most prominently, this has allowed the confirmation of the long-suspected cyclical nature of interictal epileptiform activity, seizure risk, and seizures. The timescales cover daily, multi-day, and yearly cycles. Progress has also been fueled by approaches originating from the interdisciplinary field of network science. Considering epilepsy as a large-scale network disorder yielded novel perspectives on the pre-ictal dynamics of the evolving epileptic brain. In addition to discrete predictions that a seizure will take place in a specified prediction horizon, the community broadened the scope to probabilistic forecasts of a seizure risk evolving continuously in time. This shift of gears triggered the incorporation of additional metrics to quantify the performance of forecasting algorithms, which should be compared to the chance performance of constrained stochastic null models. An imminent task of utmost importance is to find optimal ways to communicate the output of seizure-forecasting algorithms to patients, caretakers, and clinicians, so that they can have socioeconomic impact and improve patients' well-being.

摘要

最近,在癫痫预测的漫长曲折道路上取得了很多进展。在这里,我们简要回顾一下在瑞士伯尔尼大学举行的国际癫痫发作技术与分析会议(ICTALS 2022)上讨论的一些里程碑式进展。最近,可穿戴和植入式设备的发展为癫痫预测带来了主要动力,这些设备不仅可以记录脑电图,还可以记录运动行为、声音信号和自主神经系统的各种信号等数据。这种多模态监测可以进行超长时间的监测,时间跨度可以覆盖数月或数年。因此,从这些数据中提取的特征和指标现在可以更完整地评估癫痫发作的动态。最值得注意的是,这证实了人们长期以来怀疑的发作间期癫痫样活动、癫痫发作风险和癫痫发作的周期性特征。这些时间尺度包括日常、多天和每年的周期。网络科学领域的交叉学科方法也为进展提供了动力。将癫痫视为一种大规模网络障碍,可以为不断演变的癫痫大脑的发作前动力学提供新的视角。除了在特定预测时间内发生癫痫的离散预测外,该领域还将预测范围扩大到了时间上不断演变的癫痫发作风险的概率预测。这一转变促使人们引入了更多的指标来量化预测算法的性能,这些指标应与受约束的随机零模型的机会性能进行比较。目前一个极其重要的任务是找到最佳方式将癫痫预测算法的输出传达给患者、护理人员和临床医生,以便产生社会效益并改善患者的生活质量。

相似文献

1
Seizure forecasting: Where do we stand?
Epilepsia. 2023 Dec;64 Suppl 3(Suppl 3):S62-S71. doi: 10.1111/epi.17546. Epub 2023 Mar 8.
2
Seizure forecasting using minimally invasive, ultra-long-term subcutaneous electroencephalography: Individualized intrapatient models.
Epilepsia. 2023 Dec;64 Suppl 4(Suppl 4):S124-S133. doi: 10.1111/epi.17252. Epub 2022 Apr 16.
3
Forecasting seizure risk in adults with focal epilepsy: a development and validation study.
Lancet Neurol. 2021 Feb;20(2):127-135. doi: 10.1016/S1474-4422(20)30396-3. Epub 2020 Dec 17.
4
Seizure forecasting: Bifurcations in the long and winding road.
Epilepsia. 2023 Dec;64 Suppl 4(Suppl 4):S78-S98. doi: 10.1111/epi.17311. Epub 2022 Jul 1.
5
The circadian profile of epilepsy improves seizure forecasting.
Brain. 2017 Aug 1;140(8):2169-2182. doi: 10.1093/brain/awx173.
6
Epileptic seizure forecasting with wearable-based nocturnal sleep features.
Epilepsia Open. 2024 Oct;9(5):1793-1805. doi: 10.1002/epi4.13008. Epub 2024 Jul 9.
7
Seizure Diaries and Forecasting With Wearables: Epilepsy Monitoring Outside the Clinic.
Front Neurol. 2021 Jul 13;12:690404. doi: 10.3389/fneur.2021.690404. eCollection 2021.
8
Seizure forecasting and cyclic control of seizures.
Epilepsia. 2021 Feb;62 Suppl 1:S2-S14. doi: 10.1111/epi.16541. Epub 2020 Jul 26.
9
Machine learning from wristband sensor data for wearable, noninvasive seizure forecasting.
Epilepsia. 2020 Dec;61(12):2653-2666. doi: 10.1111/epi.16719. Epub 2020 Oct 11.
10
Crowdsourcing reproducible seizure forecasting in human and canine epilepsy.
Brain. 2016 Jun;139(Pt 6):1713-22. doi: 10.1093/brain/aww045. Epub 2016 Mar 31.

引用本文的文献

1
Deep learning applied in epilepsy: Bibliometric and visual analysis.
Digit Health. 2025 Sep 12;11:20552076251375840. doi: 10.1177/20552076251375840. eCollection 2025 Jan-Dec.
2
A novel ST-GCN model based on homologous microstate for subject-independent seizure prediction.
Sci Rep. 2025 Jul 2;15(1):22852. doi: 10.1038/s41598-025-06123-5.
3
Epileptiform Activity and Seizure Risk Follow Long-Term Non-Linear Attractor Dynamics.
Adv Sci (Weinh). 2025 Jun;12(23):e2411829. doi: 10.1002/advs.202411829. Epub 2025 Apr 7.
4
Seizure Detection Devices.
J Clin Med. 2025 Jan 28;14(3):863. doi: 10.3390/jcm14030863.
5
Using Long Short-Term Memory (LSTM) recurrent neural networks to classify unprocessed EEG for seizure prediction.
Front Neurosci. 2024 Nov 15;18:1472747. doi: 10.3389/fnins.2024.1472747. eCollection 2024.
6
Chasing the Holy Grail: Seizure Prediction Through Neural Cycles.
Epilepsy Curr. 2024 Oct 30;25(1):48-50. doi: 10.1177/15357597241281842. eCollection 2025 Jan-Feb.
7
Necessary for seizure forecasting outcome metrics: Seizure frequency and benchmark model.
Epilepsy Res. 2024 Dec;208:107474. doi: 10.1016/j.eplepsyres.2024.107474. Epub 2024 Nov 8.
8
Epileptic seizure forecasting with wearable-based nocturnal sleep features.
Epilepsia Open. 2024 Oct;9(5):1793-1805. doi: 10.1002/epi4.13008. Epub 2024 Jul 9.
9
Passive and active markers of cortical excitability in epilepsy.
Epilepsia. 2023 Dec;64 Suppl 3(Suppl 3):S25-S36. doi: 10.1111/epi.17578. Epub 2023 Mar 22.

本文引用的文献

1
Cyclical underreporting of seizures in patient-based seizure documentation.
Ann Clin Transl Neurol. 2023 Oct;10(10):1863-1872. doi: 10.1002/acn3.51880. Epub 2023 Aug 23.
2
Seizure occurrence is linked to multiday cycles in diverse physiological signals.
Epilepsia. 2023 Jun;64(6):1627-1639. doi: 10.1111/epi.17607. Epub 2023 Apr 20.
3
Perspectives on Understanding Aberrant Brain Networks in Epilepsy.
Front Netw Physiol. 2022 Apr 5;2:868092. doi: 10.3389/fnetp.2022.868092. eCollection 2022.
4
Time in Brain: How Biological Rhythms Impact on EEG Signals and on EEG-Derived Brain Networks.
Front Netw Physiol. 2021 Sep 27;1:755016. doi: 10.3389/fnetp.2021.755016. eCollection 2021.
5
Learning to generalize seizure forecasts.
Epilepsia. 2023 Dec;64 Suppl 4:S99-S113. doi: 10.1111/epi.17406. Epub 2022 Sep 22.
6
Seizures detection using multimodal signals: a scoping review.
Physiol Meas. 2022 Jul 18;43(7). doi: 10.1088/1361-6579/ac7a8d.
7
Seizure forecasting: Bifurcations in the long and winding road.
Epilepsia. 2023 Dec;64 Suppl 4(Suppl 4):S78-S98. doi: 10.1111/epi.17311. Epub 2022 Jul 1.
9
Seizure forecasting using minimally invasive, ultra-long-term subcutaneous EEG: Generalizable cross-patient models.
Epilepsia. 2023 Dec;64 Suppl 4(Suppl 4):S114-S123. doi: 10.1111/epi.17265. Epub 2022 May 4.
10
Seizure forecasting using minimally invasive, ultra-long-term subcutaneous electroencephalography: Individualized intrapatient models.
Epilepsia. 2023 Dec;64 Suppl 4(Suppl 4):S124-S133. doi: 10.1111/epi.17252. Epub 2022 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验