Technical University of Dresden, 01069 Dresden, Germany; Boston Children's Hospital, Boston, USA.
Technical University of Dresden, 01069 Dresden, Germany.
EBioMedicine. 2019 Jul;45:422-431. doi: 10.1016/j.ebiom.2019.07.001. Epub 2019 Jul 9.
The inability to reliably assess seizure risk is a major burden for epilepsy patients and prevents developing better treatments. Recent advances have paved the way for increasingly accurate seizure preictal state detection algorithms, primarily using electrocorticography (ECoG). To develop seizure forecasting for broad clinical and ambulatory use, however, less complex and invasive modalities are needed. Algorithms using scalp electroencephalography (EEG) and electrocardiography (EKG) have also achieved better than chance performance. But it remains unknown how much preictal information is in ECoG versus modalities amenable to everyday use - such as EKG and single channel EEG - and how to optimally extract that preictal information for seizure prediction.
We apply deep learning - a powerful method to extract information from complex data - on a large epilepsy data set containing multi-day, simultaneous recordings of EKG, ECoG, and EEG, using a variety of feature sets. We use the relative performance of our algorithms to compare the preictal information contained in each modality.
We find that single-channel EKG contains a comparable amount of preictal information as scalp EEG with up to 21 channels and that preictal information is best extracted not with standard heart rate measures, but from the power spectral density. We report that preictal information is not preferentially contained in EEG or ECoG channels within the seizure onset zone.
Collectively, these insights may help to devise future prospective, minimally invasive long-term epilepsy monitoring trials with single-channel EKG as a particularly promising modality.
无法可靠地评估癫痫发作风险是癫痫患者的主要负担,这也阻碍了更好的治疗方法的发展。最近的进展为越来越准确的癫痫发作前状态检测算法铺平了道路,这些算法主要使用皮质脑电图(ECoG)。然而,为了在更广泛的临床和日常使用中开发癫痫发作预测,需要更简单和侵入性更小的方式。使用头皮脑电图(EEG)和心电图(EKG)的算法也取得了比随机更好的性能。但是,目前尚不清楚 ECoG 与可日常使用的方式(如 EKG 和单通道 EEG)相比,有多少前癫痫信息,以及如何为癫痫预测最佳地提取这些前癫痫信息。
我们在一个包含多日、同步记录 EKG、ECoG 和 EEG 的大型癫痫数据集上应用深度学习——一种从复杂数据中提取信息的强大方法,并使用各种特征集。我们使用算法的相对性能来比较每种方式所包含的前癫痫信息。
我们发现单通道 EKG 包含与多达 21 个通道的头皮 EEG 相当数量的前癫痫信息,并且前癫痫信息最好不是通过标准心率测量来提取,而是通过功率谱密度来提取。我们报告说,前癫痫信息不是优先包含在癫痫发作起始区的 EEG 或 ECoG 通道中。
总之,这些见解可能有助于设计未来具有单通道 EKG 的前瞻性、微创性长期癫痫监测试验,单通道 EKG 是一种特别有前途的方式。