Suppr超能文献

基于蒙特利尔认知评估量表(MoCA)在急性脑卒中患者中的表现预测脑卒中后认知障碍:三种常模数据的比较。

Prediction of post-stroke cognitive impairment by Montreal Cognitive Assessment (MoCA) performances in acute stroke: comparison of three normative datasets.

机构信息

NEUROFARBA Department, Neuroscience Section, University of Florence, Florence, Italy.

Neurology Unit, Luigi Sacco University Hospital, Milan, Italy.

出版信息

Aging Clin Exp Res. 2022 Aug;34(8):1855-1863. doi: 10.1007/s40520-022-02133-9. Epub 2022 Apr 20.

Abstract

BACKGROUND

Cognitive assessment in acute stroke is relevant for identifying patients at risk of persistent post-stroke cognitive impairment (PSCI). Despite preliminary evidence on MoCA accuracy, there is no consensus on its optimal score in the acute stroke setting to predict PSCI.

AIMS

(1) To explore whether the application of different normative datasets to MoCA scores obtained in the acute stroke setting results in variable frequency of patients defined as cognitively impaired; (2) to assess whether the normality cut-offs provided by three normative datasets predict PSCI at 6-9 months; (3) to calculate alternative MoCA cut-offs able to predict PSCI.

METHODS

Consecutive stroke patients were reassessed at 6-9 months with extensive neuropsychological and functional batteries for PSCI determination.

RESULTS

Out of 207 enrolled patients, 118 (57%) were followed-up (mean 7.4 ± 1.7 months), and 77 of them (65%) received a PSCI diagnosis. The application of the normality thresholds provided by the 3 normative datasets yielded to variable (from 28.5% to 41%) rates of patients having an impaired MoCA performance, and to an inadequate accuracy in predicting PSCI, maximizing specificity instead of sensitivity. In ROC analyses, a MoCA score of 22.82, adjusted according to the most recent normative dataset, achieved a good diagnostic accuracy in predicting PSCI.

CONCLUSIONS

The classification of acute stroke patients as normal/impaired based on MoCA thresholds proposed by general population normative datasets underestimated patients at risk of persistent PSCI. We calculated a new adjusted MoCA score predictive of PSCI in acute stroke patients to be further tested in larger studies.

摘要

背景

认知评估在急性中风中很重要,因为它可以识别出有持续性中风后认知障碍(PSCI)风险的患者。尽管有关于 MoCA 准确性的初步证据,但在急性中风环境中,尚无关于预测 PSCI 的最佳 MoCA 评分的共识。

目的

(1)探讨在急性中风环境中应用不同的常模数据集对 MoCA 评分的影响,是否会导致认知障碍患者的定义发生变化;(2)评估三个常模数据集提供的正常截断值是否可以预测 6-9 个月后的 PSCI;(3)计算替代的 MoCA 截断值,以预测 PSCI。

方法

对连续的中风患者在 6-9 个月时进行神经心理学和功能评估,以确定 PSCI。

结果

在 207 名入组患者中,有 118 名(57%)接受了随访(平均 7.4±1.7 个月),其中 77 名(65%)被诊断为 PSCI。应用三个常模数据集提供的正常截断值会导致患者 MoCA 表现受损的比例不同(从 28.5%到 41%),且预测 PSCI的准确性不足,即特异性增加而敏感性降低。在 ROC 分析中,根据最近的常模数据集调整后的 MoCA 评分 22.82,在预测 PSCI 方面具有良好的诊断准确性。

结论

基于一般人群常模数据集提出的 MoCA 阈值对急性中风患者进行的正常/受损分类,低估了持续性 PSCI 的风险患者。我们计算了一个新的调整后的 MoCA 评分,可以预测急性中风患者的 PSCI,需要在更大的研究中进一步测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd2a/9283135/3939f0a945c9/40520_2022_2133_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验