Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, California, USA.
Department of Ecology & Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA.
Conserv Biol. 2022 Dec;36(6):e13924. doi: 10.1111/cobi.13924. Epub 2022 Jun 17.
Development and implementation of effective protected area management to reduce deforestation depend in part on identifying factors contributing to forest loss and areas at risk of conversion, but standard land-use-change modeling may not fully capture contextual factors that are not easily quantified. To better understand deforestation and agricultural expansion in Amazonian protected areas, we combined quantitative land-use-change modeling with qualitative discourse analysis in a case study of Brazil's Jamanxim National Forest. We modeled land-use change from 2008 to 2018 and projected deforestation through 2028. We used variables identified in a review of studies that modeled land-use change in the Amazon (e.g., variables related to agricultural suitability and economic accessibility) and from a critical discourse analysis that examined documents produced by different actors (e.g., government agencies and conservation nonprofit organizations) at various spatial scales. As measured by analysis of variance, McFadden's adjusted pseudo R , and quantity and allocation disagreement, we found that including variables in the model identified as important to deforestation dynamics through the qualitative discourse analysis (e.g., the proportion of unallocated public land, distance to proposed infrastructure developments, and density of recent fires) alongside more traditional variables (e.g., elevation, distance to roads, and protection status) improved the predictive ability of these models. Models that included discourse analysis variables and traditional variables explained up to 19.3% more of the observed variation in deforestation probability than a model that included only traditional variables and 4.1% more variation than a model with only discourse analysis variables. Our approach of integrating qualitative and quantitative methods in land-use-change modeling provides a framework for future interdisciplinary work in land-use change.
开发和实施有效的保护区管理措施来减少森林砍伐,部分依赖于确定导致森林丧失和面临转化风险的因素,但标准的土地利用变化模型可能无法充分捕捉到难以量化的背景因素。为了更好地了解亚马孙保护区的森林砍伐和农业扩张情况,我们在巴西雅马逊国家森林的案例研究中,将定量土地利用变化模型与定性话语分析相结合。我们对 2008 年至 2018 年的土地利用变化进行建模,并对 2028 年的森林砍伐情况进行预测。我们使用了在对亚马孙土地利用变化进行建模的研究综述中确定的变量(例如,与农业适宜性和经济可达性相关的变量)以及通过批判性话语分析确定的变量,该分析考察了不同行为体(例如,政府机构和保护非营利组织)在不同空间尺度上生成的文件。通过方差分析、麦克法登调整后的伪 R 和数量与分配差异的衡量,我们发现,通过定性话语分析确定的模型变量(例如,未分配的公有土地比例、距离拟议基础设施发展的距离和最近火灾的密度)以及更传统的变量(例如,海拔、距离道路的距离和保护状况),这些模型的预测能力有所提高。与仅包含传统变量的模型相比,包含话语分析变量和传统变量的模型解释了高达 19.3%的森林砍伐概率的观测变异性,而与仅包含话语分析变量的模型相比,解释了 4.1%的变异性。我们在土地利用变化建模中整合定性和定量方法的方法为土地利用变化的未来跨学科工作提供了一个框架。