Suppr超能文献

基于深度学习的口腔鳞状细胞癌的组织病理学诊断。

Histopathology-Based Diagnosis of Oral Squamous Cell Carcinoma Using Deep Learning.

机构信息

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.

National Key Laboratory of Fundamental Science on Synthetic Vision, College of Computer Science, Sichuan University, Chengdu, Sichuan, China.

出版信息

J Dent Res. 2022 Oct;101(11):1321-1327. doi: 10.1177/00220345221089858. Epub 2022 Apr 21.

Abstract

Oral squamous cell carcinoma (OSCC) is prevalent around the world and is associated with poor prognosis. OSCC is typically diagnosed from tissue biopsy sections by pathologists who rely on their empirical experience. Deep learning models may improve the accuracy and speed of image classification, thus reducing human error and workload. Here we developed a custom-made deep learning model to assist pathologists in detecting OSCC from histopathology images. We collected and analyzed a total of 2,025 images, among which 1,925 images were included in the training set and 100 images were included in the testing set. Our model was able to automatically evaluate these images and arrive at a diagnosis with a sensitivity of 0.98, specificity of 0.92, positive predictive value of 0.924, negative predictive value of 0.978, and F1 score of 0.951. Using a subset of 100 images, we examined whether our model could improve the diagnostic performance of junior and senior pathologists. We found that junior pathologists were able to delineate OSCC in these images 6.26 min faster when assisted by the model than when working alone. When the clinicians were assisted by the model, their average F1 score improved from 0.9221 to 0.9566 in the case of junior pathologists and from 0.9361 to 0.9463 in the case of senior pathologists. Our findings indicate that deep learning can improve the accuracy and speed of OSCC diagnosis from histopathology images.

摘要

口腔鳞状细胞癌(OSCC)在全球范围内较为常见,且预后较差。通常情况下,病理学家通过组织活检切片来诊断 OSCC,他们依赖于自身的经验。深度学习模型可以提高图像分类的准确性和速度,从而减少人为错误和工作量。在此,我们开发了一个定制的深度学习模型,以协助病理学家从组织病理学图像中检测 OSCC。我们共收集和分析了 2025 张图像,其中 1925 张图像用于训练集,100 张图像用于测试集。我们的模型能够自动评估这些图像并做出诊断,其灵敏度为 0.98,特异性为 0.92,阳性预测值为 0.924,阴性预测值为 0.978,F1 得分为 0.951。我们使用了 100 张图像的子集来检验我们的模型是否可以提高初级和高级病理学家的诊断性能。我们发现,当模型辅助初级病理学家进行诊断时,他们可以比单独工作时快 6.26 分钟识别出 OSCC。当临床医生使用模型辅助诊断时,初级病理学家的平均 F1 评分从 0.9221 提高到 0.9566,高级病理学家的平均 F1 评分从 0.9361 提高到 0.9463。我们的研究结果表明,深度学习可以提高从组织病理学图像中诊断 OSCC 的准确性和速度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验