Suppr超能文献

利用治疗前活检图像预测克罗恩病中乌司奴单抗的治疗反应。

Predicting ustekinumab treatment response in Crohn's disease using pre-treatment biopsy images.

作者信息

Cai Chengfei, Chen Ruidong, Chen Jieyu, Li Jun, Lv Caiyun, Jiao Yiping, Wu Lanqing, Chen Juan, Sun Qi, Shi Qianyun, Xu Jun, Tang Wen, Liu Yao

机构信息

Jiangsu Key Laboratory of Intelligent Medical Image Computing, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China.

School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China.

出版信息

Bioinformatics. 2025 Jun 2;41(6). doi: 10.1093/bioinformatics/btaf301.

Abstract

MOTIVATION

Crohn's disease (CD) exhibits substantial variability in response to biological therapies such as ustekinumab (UST), a monoclonal antibody targeting interleukin-12/23. However, predicting individual treatment responses remains difficult due to the lack of reliable histopathological biomarkers and the morphological complexity of tissue. While recent deep learning methods have leveraged whole-slide images (WSIs), most lack effective mechanisms for selecting relevant regions and integrating patch-level evidence into robust patient-level predictions. Therefore, a framework that captures local histological cues and global tissue context is needed to improve prediction performance.

RESULTS

We propose a novel clustering-enhanced weakly supervised learning framework to predict UST treatment response from pre-treatment WSIs of CD patients. First, patches from WSIs were encoded using a pre-trained vision foundation model, and k-means clustering was applied to identify representative morphological patterns. Discriminative patches associated with treatment outcomes were selected via a DenseNet-based classifier, with Grad-CAM used to enhance interpretability. To aggregate patch-level predictions, we adopted a multi-instance learning approach, from which whole-slide features were extracted using both patch likelihood histograms and bag-of-words representations. These features were subsequently used to train a classifier for final response prediction. Experimental results on an independent test set demonstrated that our WSI-level model achieved superior predictive performance with an AUC of 0.938 (95% CI: 0.879-0.996), sensitivity of 0.951, and specificity of 0.825, outperforming baseline patch-level models. These findings suggest that our method enables accurate, interpretable, and scalable prediction of biological therapy response in CD, potentially supporting personalized treatment strategies in clinical settings.

AVAILABILITY AND IMPLEMENTATION

https://github.com/caicai2526/USTAIM.

摘要

动机

克罗恩病(CD)对诸如乌司奴单抗(UST)等生物疗法的反应存在很大差异,乌司奴单抗是一种靶向白细胞介素-12/23的单克隆抗体。然而,由于缺乏可靠的组织病理学生物标志物以及组织形态学的复杂性,预测个体治疗反应仍然困难。虽然最近的深度学习方法利用了全切片图像(WSIs),但大多数方法缺乏选择相关区域并将补丁级证据整合到可靠的患者级预测中的有效机制。因此,需要一个能够捕捉局部组织学线索和全局组织背景的框架来提高预测性能。

结果

我们提出了一种新颖的聚类增强弱监督学习框架,用于从CD患者的治疗前WSIs预测UST治疗反应。首先,使用预训练的视觉基础模型对WSIs中的补丁进行编码,并应用k均值聚类来识别代表性的形态模式。通过基于DenseNet的分类器选择与治疗结果相关的判别性补丁,使用Grad-CAM增强可解释性。为了汇总补丁级预测,我们采用了多实例学习方法,从中使用补丁似然直方图和词袋表示提取全切片特征。这些特征随后用于训练用于最终反应预测的分类器。在独立测试集上的实验结果表明,我们的WSI级模型实现了卓越的预测性能,AUC为0.938(95%CI:0.879-0.996),灵敏度为0.951,特异性为0.825,优于基线补丁级模型。这些发现表明,我们的方法能够准确、可解释且可扩展地预测CD中的生物治疗反应,可能支持临床环境中的个性化治疗策略。

可用性和实现方式

https://github.com/caicai2526/USTAIM。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/774c/12133262/8c548e96fec8/btaf301f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验