Suppr超能文献

基于 YOLOv4 的航空图像中定向车辆检测。

Oriented Vehicle Detection in Aerial Images Based on YOLOv4.

机构信息

Department of Information & Computer Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan.

出版信息

Sensors (Basel). 2022 Nov 1;22(21):8394. doi: 10.3390/s22218394.

Abstract

CNN-based object detectors have achieved great success in recent years. The available detectors adopted horizontal bounding boxes to locate various objects. However, in some unique scenarios, objects such as buildings and vehicles in aerial images may be densely arranged and have apparent orientations. Therefore, some approaches extend the horizontal bounding box to the oriented bounding box to better extract objects, usually carried out by directly regressing the angle or corners. However, this suffers from the discontinuous boundary problem caused by angular periodicity or corner order. In this paper, we propose a simple but efficient oriented object detector based on YOLOv4 architecture. We regress the offset of an object's front point instead of its angle or corners to avoid the above mentioned problems. In addition, we introduce the intersection over union (IoU) correction factor to make the training process more stable. The experimental results on two public datasets, DOTA and HRSC2016, demonstrate that the proposed method significantly outperforms other methods in terms of detection speed while maintaining high accuracy. In DOTA, our proposed method achieved the highest mAP for the classes with prominent front-side appearances, such as small vehicles, large vehicles, and ships. The highly efficient architecture of YOLOv4 increases more than 25% detection speed compared to the other approaches.

摘要

基于卷积神经网络的目标检测方法近年来取得了巨大的成功。现有的检测器采用水平边界框来定位各种物体。然而,在一些特殊场景中,如航空图像中的建筑物和车辆等物体可能会密集排列,并具有明显的朝向。因此,一些方法将水平边界框扩展到定向边界框,以更好地提取物体,通常通过直接回归角度或角点来实现。然而,这会受到角度周期性或角点顺序不连续边界的问题的影响。在本文中,我们提出了一种基于 YOLOv4 架构的简单而有效的定向目标检测器。我们回归物体前端点的偏移量,而不是角度或角点,以避免上述问题。此外,我们引入了交并比 (IoU) 修正因子,使训练过程更加稳定。在两个公共数据集 DOTA 和 HRSC2016 上的实验结果表明,与其他方法相比,我们的方法在保持高精度的同时,显著提高了检测速度。在 DOTA 数据集上,我们的方法在具有明显正面外观的类(如小型车辆、大型车辆和船只)中取得了最高的平均精度。YOLOv4 的高效架构比其他方法提高了超过 25%的检测速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6cb/9658642/b9e817d1b861/sensors-22-08394-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验