Suppr超能文献

精神分裂症的诊断:全面评估

Diagnosis of Schizophrenia: A Comprehensive Evaluation.

作者信息

Tanveer M, Jangir Jatin, Ganaie M A, Beheshti Iman, Tabish M, Chhabra Nikunj

出版信息

IEEE J Biomed Health Inform. 2023 Mar;27(3):1185-1192. doi: 10.1109/JBHI.2022.3168357. Epub 2023 Mar 7.

Abstract

Machine learning models have been successfully employed in the diagnosis of Schizophrenia disease. The impact of classification models and the feature selection techniques on the diagnosis of Schizophrenia have not been evaluated. Here, we sought to access the performance of classification models along with different feature selection approaches on the structural magnetic resonance imaging data. The data consist of 72 subjects with Schizophrenia and 74 healthy control subjects. We evaluated different classification algorithms based on support vector machine (SVM), random forest, kernel ridge regression and randomized neural networks. Moreover, we evaluated T-Test, Receiver Operator Characteristics (ROC), Wilcoxon, entropy, Bhattacharyya, Minimum Redundancy Maximum Relevance (MRMR) and Neighbourhood Component Analysis (NCA) as the feature selection techniques. Based on the evaluation, SVM based models with Gaussian kernel proved better compared to other classification models and Wilcoxon feature selection emerged as the best feature selection approach. Moreover, in terms of data modality the performance on integration of the grey matter and white matter proved better compared to the performance on the grey and white matter individually. Our evaluation showed that classification algorithms along with the feature selection approaches impact the diagnosis of Schizophrenia disease. This indicates that proper selection of the features and the classification models can improve the diagnosis of Schizophrenia.

摘要

机器学习模型已成功应用于精神分裂症的诊断。分类模型和特征选择技术对精神分裂症诊断的影响尚未得到评估。在此,我们试图评估分类模型以及不同特征选择方法在结构磁共振成像数据上的性能。数据包括72名精神分裂症患者和74名健康对照者。我们评估了基于支持向量机(SVM)、随机森林、核岭回归和随机神经网络的不同分类算法。此外,我们评估了T检验、受试者工作特征曲线(ROC)、威尔科克森检验、熵、巴氏距离、最小冗余最大相关性(MRMR)和邻域成分分析(NCA)作为特征选择技术。基于评估,与其他分类模型相比,基于高斯核的支持向量机模型表现更好,威尔科克森特征选择成为最佳特征选择方法。此外,在数据模态方面,灰质和白质整合的性能比单独的灰质和白质性能更好。我们的评估表明,分类算法以及特征选择方法会影响精神分裂症的诊断。这表明正确选择特征和分类模型可以改善精神分裂症的诊断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验