Human Genetic Research Centre, Baqiyatallah University of Medical Science, Tehran, Iran.
Human Genetic Research Centre, Baqiyatallah University of Medical Science, Tehran, Iran.
Gene. 2022 Jul 1;830:146518. doi: 10.1016/j.gene.2022.146518. Epub 2022 Apr 18.
Prokaryotes possess an adaptive immune system using various CRISPR associated (Cas) genes to make an archive of records from invading phages and eliminate them upon re-exposure when specialized Cas proteins cut foreign DNA into small pieces. On the basis of the different types of Cas proteins, CRISPR systems seen in some prokaryotic genomes, are different to each other. It has been proved that CRISPR has a great potential for genome engineering. Studies have also demonstrated that in comparison to the preceding genome engineering tools CRISPR/Cas systems can be harnessed as a flexible tool with easy multiplexing and scaling ability. Recent studies suggest that CRISPR/Cas systems can also be used for non-genome engineering roles. Isolation and identification of new Cas proteins or modification of existing ones are effectively increasing the number of CRISPR applications and helps its development. D10A and H840A mutations at RuvC and HNH endonuclease domains of wild type Streptococcus pyogenes Cas9 (SpCas9) respectively creates a nuclease, dead Cas9 (dCas9) molecule, that does not cut target DNA but still retains its capability for binding to target DNA based on the gRNA targeting sequence. In this article we review the potentials of this enzyme, dCas9, toward development of the applications of CRISPR/dCas9 technology in fields such as; visualization of genomic loci, disease diagnosis and transcriptional repression and activation.
原核生物拥有一种适应性免疫系统,利用各种 CRISPR 相关(Cas)基因来记录入侵噬菌体的信息,并在再次暴露时利用专门的 Cas 蛋白将外来 DNA 切割成小片段来消灭它们。基于不同类型的 Cas 蛋白,一些原核基因组中的 CRISPR 系统彼此不同。已经证明 CRISPR 具有很大的基因组工程潜力。研究还表明,与之前的基因组工程工具相比,CRISPR/Cas 系统可以作为一种灵活的工具,具有易于多重化和扩展的能力。最近的研究表明,CRISPR/Cas 系统也可以用于非基因组工程领域。分离和鉴定新的 Cas 蛋白或修饰现有的 Cas 蛋白可以有效地增加 CRISPR 的应用数量,并促进其发展。野生型酿脓链球菌 Cas9(SpCas9)的 RuvC 和 HNH 内切酶结构域中的 D10A 和 H840A 突变分别产生一种核酸酶,即无切割活性的 Cas9(dCas9)分子,它不能切割靶 DNA,但仍然保留其基于靶向 gRNA 序列与靶 DNA 结合的能力。本文综述了该酶 dCas9 的潜力,以及 CRISPR/dCas9 技术在基因组区域可视化、疾病诊断、转录抑制和激活等领域的应用。