Suppr超能文献

基于 mRNA 表达谱的生物信息学筛选宫颈癌潜在生物标志物以发现药物靶点和药物。

Bioinformatics Screening of Potential Biomarkers from mRNA Expression Profiles to Discover Drug Targets and Agents for Cervical Cancer.

机构信息

Centre for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Int J Mol Sci. 2022 Apr 2;23(7):3968. doi: 10.3390/ijms23073968.

Abstract

Bioinformatics analysis has been playing a vital role in identifying potential genomic biomarkers more accurately from an enormous number of candidates by reducing time and cost compared to the wet-lab-based experimental procedures for disease diagnosis, prognosis, and therapies. Cervical cancer (CC) is one of the most malignant diseases seen in women worldwide. This study aimed at identifying potential key genes (KGs), highlighting their functions, signaling pathways, and candidate drugs for CC diagnosis and targeting therapies. Four publicly available microarray datasets of CC were analyzed for identifying differentially expressed genes (DEGs) by the LIMMA approach through GEO2R online tool. We identified 116 common DEGs (cDEGs) that were utilized to identify seven KGs (AURKA, BRCA1, CCNB1, CDK1, MCM2, NCAPG2, and TOP2A) by the protein-protein interaction (PPI) network analysis. The GO functional and KEGG pathway enrichment analyses of KGs revealed some important functions and signaling pathways that were significantly associated with CC infections. The interaction network analysis identified four TFs proteins and two miRNAs as the key transcriptional and post-transcriptional regulators of KGs. Considering seven KGs-based proteins, four key TFs proteins, and already published top-ranked seven KGs-based proteins (where five KGs were common with our proposed seven KGs) as drug target receptors, we performed their docking analysis with the 80 meta-drug agents that were already published by different reputed journals as CC drugs. We found Paclitaxel, Vinorelbine, Vincristine, Docetaxel, Everolimus, Temsirolimus, and Cabazitaxel as the top-ranked seven candidate drugs. Finally, we investigated the binding stability of the top-ranked three drugs (Paclitaxel, Vincristine, Vinorelbine) by using 100 ns MD-based MM-PBSA simulations with the three top-ranked proposed receptors (AURKA, CDK1, TOP2A) and observed their stable performance. Therefore, the proposed drugs might play a vital role in the treatment against CC.

摘要

生物信息学分析通过减少时间和成本,相对于基于湿实验室的疾病诊断、预后和治疗的实验程序,在更准确地从大量候选物中识别潜在的基因组生物标志物方面发挥着至关重要的作用。宫颈癌(CC)是全球女性中最恶性的疾病之一。本研究旨在鉴定潜在的关键基因(KGs),突出其功能、信号通路和用于 CC 诊断和靶向治疗的候选药物。通过 GEO2R 在线工具,利用 LIMMA 方法分析了四个公开的 CC 微阵列数据集,以鉴定差异表达基因(DEGs)。我们确定了 116 个常见的差异表达基因(cDEGs),并利用该基因鉴定了七个 KGs(AURKA、BRCA1、CCNB1、CDK1、MCM2、NCAPG2 和 TOP2A)的蛋白质-蛋白质相互作用(PPI)网络分析。KGs 的 GO 功能和 KEGG 通路富集分析揭示了一些与 CC 感染显著相关的重要功能和信号通路。互作网络分析确定了四个 TF 蛋白和两个 miRNA 作为 KGs 的关键转录和转录后调控因子。考虑到基于七个 KGs 的蛋白质、四个关键 TF 蛋白和已经发表的基于前七个 KGs 的排名最高的七种蛋白质(其中五个 KGs 与我们提出的七种 KGs 相同)作为药物靶受体,我们用已经发表的 80 种元药物进行了它们的对接分析这些药物是不同知名期刊作为 CC 药物发表的。我们发现紫杉醇、长春瑞滨、长春新碱、多西他赛、依维莫司、替西罗莫司和卡巴他赛是排名最高的七种候选药物。最后,我们使用三种排名最高的建议受体(AURKA、CDK1、TOP2A)进行了 100ns MD 基于 MM-PBSA 的模拟,研究了三种排名最高的药物(紫杉醇、长春新碱、长春瑞滨)的结合稳定性,并观察到它们的稳定性能。因此,建议的药物可能在治疗 CC 方面发挥重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4265/8999699/32f20e6bd8ce/ijms-23-03968-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验