Suppr超能文献

基于领域特定的 ALBERT 进行生物医学自然语言处理任务的基准测试。

Benchmarking for biomedical natural language processing tasks with a domain specific ALBERT.

机构信息

School of Computer Science, The University of Sydney, Sydney, Australia.

Biomedical Informatics and Digital Health and Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia.

出版信息

BMC Bioinformatics. 2022 Apr 21;23(1):144. doi: 10.1186/s12859-022-04688-w.

Abstract

BACKGROUND

The abundance of biomedical text data coupled with advances in natural language processing (NLP) is resulting in novel biomedical NLP (BioNLP) applications. These NLP applications, or tasks, are reliant on the availability of domain-specific language models (LMs) that are trained on a massive amount of data. Most of the existing domain-specific LMs adopted bidirectional encoder representations from transformers (BERT) architecture which has limitations, and their generalizability is unproven as there is an absence of baseline results among common BioNLP tasks.

RESULTS

We present 8 variants of BioALBERT, a domain-specific adaptation of a lite bidirectional encoder representations from transformers (ALBERT), trained on biomedical (PubMed and PubMed Central) and clinical (MIMIC-III) corpora and fine-tuned for 6 different tasks across 20 benchmark datasets. Experiments show that a large variant of BioALBERT trained on PubMed outperforms the state-of-the-art on named-entity recognition (+ 11.09% BLURB score improvement), relation extraction (+ 0.80% BLURB score), sentence similarity (+ 1.05% BLURB score), document classification (+ 0.62% F1-score), and question answering (+ 2.83% BLURB score). It represents a new state-of-the-art in 5 out of 6 benchmark BioNLP tasks.

CONCLUSIONS

The large variant of BioALBERT trained on PubMed achieved a higher BLURB score than previous state-of-the-art models on 5 of the 6 benchmark BioNLP tasks. Depending on the task, 5 different variants of BioALBERT outperformed previous state-of-the-art models on 17 of the 20 benchmark datasets, showing that our model is robust and generalizable in the common BioNLP tasks. We have made BioALBERT freely available which will help the BioNLP community avoid computational cost of training and establish a new set of baselines for future efforts across a broad range of BioNLP tasks.

摘要

背景

生物医学文本数据的丰富性加上自然语言处理(NLP)的进步,正在催生新的生物医学自然语言处理(BioNLP)应用。这些 NLP 应用程序或任务依赖于大量数据上训练的特定领域语言模型(LMs)的可用性。大多数现有的特定领域 LMs 采用来自转换器的双向编码器表示(BERT)架构,该架构存在局限性,并且由于在常见的 BioNLP 任务中缺乏基准结果,因此其泛化能力尚未得到证明。

结果

我们提出了 8 种 BioALBERT 变体,这是一种对生物医学(PubMed 和 PubMed Central)和临床(MIMIC-III)语料库进行训练的 Lite 双向编码器表示的特定领域自适应,针对 20 个基准数据集的 6 个不同任务进行了微调。实验表明,在 PubMed 上训练的大型 BioALBERT 变体在命名实体识别(+BLURB 分数提高 11.09%)、关系提取(+BLURB 分数 0.80%)、句子相似性(+BLURB 分数 1.05%)、文档分类(+F1 分数 0.62%)和问答(+BLURB 分数 2.83%)方面的表现优于最先进的方法。它在 6 个基准 BioNLP 任务中的 5 个任务中代表了新的最先进水平。

结论

在 6 个基准 BioNLP 任务中的 5 个任务中,在 PubMed 上训练的大型 BioALBERT 变体的 BLURB 分数高于以前的最先进模型。根据任务的不同,在 20 个基准数据集的 17 个数据集上,5 种不同的 BioALBERT 变体优于以前的最先进模型,这表明我们的模型在常见的 BioNLP 任务中具有稳健性和可泛化性。我们已经免费提供了 BioALBERT,这将帮助 BioNLP 社区避免训练的计算成本,并为未来广泛的 BioNLP 任务建立新的基准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b79/9022356/ff9cf25635a3/12859_2022_4688_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验