Suppr超能文献

观点:监管基因毒性:过去、现在与未来

Opinion: regulatory genotoxicity: past, present and future.

作者信息

Hayashi Makoto

机构信息

makoto international consulting, 4-23-3-1, Ebina, Kanagawa, 243-0431, Japan.

出版信息

Genes Environ. 2022 Apr 22;44(1):13. doi: 10.1186/s41021-022-00242-5.

Abstract

I will reflect on the role of genotoxicity in the regulation of chemical safety, summarizing the past and current situation, and giving personal views for the future. This includes how genotoxicity information has been, and is being, used in the evaluation of the safety of chemical substances including pharmaceuticals, pesticides, food additives and industrial chemicals before they are introduced into the market for sale.In Japan, the Industrial Safety and Health Act, enacted in 1972, assures workers' safety by including safety assessment of chemicals to which workers may be exposed in the workplace. The law firstly included the bacterial gene mutation assay with rat liver microsome fraction (Ames test) for the evaluation of chemical mutagenicity to predict carcinogenic potential, which was the forerunner of requiring a genotoxicity test by law. Since then, genotoxicity, especially the Ames test and the in vitro chromosomal aberration test using cultured mammalian cells (especially Chinese hamster cells) have been incorporated into several laws to assess the safety of various chemicals. Many test systems for different endpoints have been developed, improved, and used in practice. The battery strategy, combining several test systems to detect as many genotoxic chemicals as possible, was implemented because no one test system can detect all genotoxic agents with different mechanisms of genetic damage. In general, the standard battery consists of the Ames test, in vitro chromosomal aberration test and the in vivo rodent erythrocyte micronucleus test as a representative in vivo assay. Many other test systems have been used for supplementary testing as well as for research studies. Important keywords for regulatory science include 1) guidelines, 2) Good Laboratory Practice, 3) evaluation and interpretation of test results. Here, I discuss on these key points, and give personal opinions for the future.

摘要

我将反思遗传毒性在化学物质安全监管中的作用,总结过去和当前的情况,并对未来提出个人看法。这包括遗传毒性信息在药品、农药、食品添加剂和工业化学品等化学物质上市销售前的安全性评估中是如何被使用的,以及正在如何被使用。在日本,1972年颁布的《工业安全与健康法》通过纳入对工人在工作场所可能接触到的化学物质的安全评估来确保工人安全。该法律首先纳入了用大鼠肝微粒体组分进行的细菌基因突变试验(艾姆斯试验),以评估化学物质的致突变性,从而预测致癌潜力,这是法律要求进行遗传毒性试验的前身。从那时起,遗传毒性,特别是艾姆斯试验和使用培养的哺乳动物细胞(尤其是中国仓鼠细胞)进行的体外染色体畸变试验,已被纳入多项法律,以评估各种化学物质的安全性。针对不同终点的许多测试系统已经得到开发、改进并在实践中使用。由于没有一个测试系统能够检测出所有具有不同遗传损伤机制的遗传毒性物质,因此实施了将多个测试系统结合起来以检测尽可能多的遗传毒性化学物质的组合策略。一般来说,标准组合包括艾姆斯试验、体外染色体畸变试验和作为代表性体内试验的体内啮齿动物红细胞微核试验。许多其他测试系统也被用于补充测试以及研究。监管科学的重要关键词包括1)指南,2)良好实验室规范,3)测试结果的评估与解释。在此,我将讨论这些要点,并对未来提出个人意见。

相似文献

本文引用的文献

6
Risk assessment in the 21st century: roadmap and matrix.21世纪的风险评估:路线图与矩阵
Crit Rev Toxicol. 2014 Aug;44 Suppl 3:6-16. doi: 10.3109/10408444.2014.931924.
7
A 21st century roadmap for human health risk assessment.21世纪人类健康风险评估路线图。
Crit Rev Toxicol. 2014 Aug;44 Suppl 3:1-5. doi: 10.3109/10408444.2014.931923.
9
Statistical analysis of in vivo rodent micronucleus assay.体内啮齿动物微核试验的统计分析
Mutat Res. 2000 Sep 20;469(2):233-41. doi: 10.1016/s1383-5718(00)00085-1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验