Suppr超能文献

结合神经认知和电生理特征从健康对照中检测精神分裂症病例

Detection of Schizophrenia Cases From Healthy Controls With Combination of Neurocognitive and Electrophysiological Features.

作者信息

Tian Qing, Yang Ning-Bo, Fan Yu, Dong Fang, Bo Qi-Jing, Zhou Fu-Chun, Zhang Ji-Cong, Li Liang, Yin Guang-Zhong, Wang Chuan-Yue, Fan Ming

机构信息

Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Ministry of Science and Technology, Beijing, China.

Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, The Institute of Mental Health, Suzhou, China.

出版信息

Front Psychiatry. 2022 Apr 5;13:810362. doi: 10.3389/fpsyt.2022.810362. eCollection 2022.

Abstract

BACKGROUND

The search for a method that utilizes biomarkers to identify patients with schizophrenia from healthy individuals has occupied researchers for decades. However, no single indicator can be employed to achieve the good in clinical practice. We aim to develop a comprehensive machine learning pipeline based on neurocognitive and electrophysiological combined features for distinguishing schizophrenia patients from healthy people.

METHODS

In the present study, 69 patients with schizophrenia and 50 healthy controls participated. Neurocognitive (contains seven specific domains of cognition) and electrophysiological [prepulse inhibition, electroencephalography (EEG) power spectrum, detrended fluctuation analysis, and fractal dimension (FD)] features were collected, all these features were taken together to generate the identification models of schizophrenia by applying logistics, random forest, and extreme gradient boosting algorithm. The classification capabilities of these models were also evaluated.

RESULTS

Both the neurocognitive and electrophysiological feature sets showed a good classification effect with the highest accuracy greater than 85% and AUC greater than 90%. Specifically, the performances of the combined neurocognitive and electrophysiological feature sets achieved the highest accuracy of 93.28% and AUC of 97.91%. The extreme gradient boosting algorithm as a whole presented more stably and precisely in classification efficiency.

CONCLUSION

The highest classification accuracy of 93.28% by combination of neurocognitive and electrophysiological features shows that both measurements are appropriate indicators to be used in discriminating schizophrenia patients and healthy individuals. Also, among three algorithms, extreme gradient boosting had better classified performances than logistics and random forest algorithms.

摘要

背景

数十年来,研究人员一直在寻找一种利用生物标志物从健康个体中识别精神分裂症患者的方法。然而,在临床实践中,没有单一指标能够达到理想效果。我们旨在开发一种基于神经认知和电生理联合特征的综合机器学习流程,以区分精神分裂症患者和健康人。

方法

在本研究中,69例精神分裂症患者和50名健康对照参与其中。收集了神经认知(包含七个特定认知领域)和电生理[预脉冲抑制、脑电图(EEG)功率谱、去趋势波动分析和分形维数(FD)]特征,通过应用逻辑回归、随机森林和极端梯度提升算法,将所有这些特征结合起来生成精神分裂症的识别模型。还评估了这些模型的分类能力。

结果

神经认知和电生理特征集均显示出良好的分类效果,最高准确率大于85%,曲线下面积(AUC)大于90%。具体而言,神经认知和电生理联合特征集的表现达到了最高准确率93.28%和AUC 97.91%。极端梯度提升算法在分类效率上整体表现得更稳定、更精确。

结论

神经认知和电生理特征相结合的最高分类准确率为93.28%,表明这两种测量方法都是区分精神分裂症患者和健康个体的合适指标。此外,在三种算法中,极端梯度提升算法的分类性能优于逻辑回归和随机森林算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ba/9016153/cfaa8efa7a9f/fpsyt-13-810362-g001.jpg

相似文献

1
Detection of Schizophrenia Cases From Healthy Controls With Combination of Neurocognitive and Electrophysiological Features.
Front Psychiatry. 2022 Apr 5;13:810362. doi: 10.3389/fpsyt.2022.810362. eCollection 2022.
2
EEG Signals Classification Using Machine Learning for The Identification and Diagnosis of Schizophrenia.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:4521-4524. doi: 10.1109/EMBC.2019.8857946.
6
Migraine classification using somatosensory evoked potentials.
Cephalalgia. 2019 Aug;39(9):1143-1155. doi: 10.1177/0333102419839975. Epub 2019 Mar 26.
7
The machine learning algorithm for the diagnosis of schizophrenia on the basis of gene expression in peripheral blood.
Neurosci Lett. 2021 Feb 6;745:135596. doi: 10.1016/j.neulet.2020.135596. Epub 2020 Dec 24.
8
Neurocognitive Graphs of First-Episode Schizophrenia and Major Depression Based on Cognitive Features.
Neurosci Bull. 2018 Apr;34(2):312-320. doi: 10.1007/s12264-017-0190-6. Epub 2017 Nov 2.
9
Convergence and divergence of neurocognitive patterns in schizophrenia and depression.
Schizophr Res. 2018 Feb;192:327-334. doi: 10.1016/j.schres.2017.06.004. Epub 2017 Jun 23.
10
Machine Learning Techniques for the Diagnosis of Schizophrenia Based on Event-Related Potentials.
Front Neuroinform. 2022 Jul 8;16:893788. doi: 10.3389/fninf.2022.893788. eCollection 2022.

本文引用的文献

2
Neurophysiologic Characterization of Resting State Connectivity Abnormalities in Schizophrenia Patients.
Front Psychiatry. 2020 Nov 27;11:608154. doi: 10.3389/fpsyt.2020.608154. eCollection 2020.
3
Abnormal Spontaneous Gamma Power Is Associated With Verbal Learning and Memory Dysfunction in Schizophrenia.
Front Psychiatry. 2020 Aug 31;11:832. doi: 10.3389/fpsyt.2020.00832. eCollection 2020.
4
Progression of Mental Health Services during the COVID-19 Outbreak in China.
Int J Biol Sci. 2020 Mar 15;16(10):1732-1738. doi: 10.7150/ijbs.45120. eCollection 2020.
9
EEG power spectrum analysis for schizophrenia during mental activity.
Australas Phys Eng Sci Med. 2019 Sep;42(3):887-897. doi: 10.1007/s13246-019-00779-w. Epub 2019 Jul 30.
10
ICLabel: An automated electroencephalographic independent component classifier, dataset, and website.
Neuroimage. 2019 Sep;198:181-197. doi: 10.1016/j.neuroimage.2019.05.026. Epub 2019 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验