Zhang Lei
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:4521-4524. doi: 10.1109/EMBC.2019.8857946.
This paper presents the design of a machine learning-based classifier for the differentiation between Schizophrenia patients and healthy controls using features extracted from electroencephalograph(EEG) signals based on event related potential(ERP). A number of features are extracted from an online EEG dataset with 81 subjects, including 32 healthy controls and 49 Schizophrenia patients. The EEG signals are preprocessed and since the dataset is relatively small, the random forest machine learning algorithm is chosen to be applied on different combinations of feature sets for classification. It is found that the classification accuracy can be improved by adding certain features extracted from EEG signals.
本文介绍了一种基于机器学习的分类器设计,该分类器利用基于事件相关电位(ERP)从脑电图(EEG)信号中提取的特征,对精神分裂症患者和健康对照进行区分。从一个包含81名受试者的在线EEG数据集中提取了许多特征,其中包括32名健康对照和49名精神分裂症患者。对EEG信号进行了预处理,由于数据集相对较小,因此选择随机森林机器学习算法应用于不同特征集组合进行分类。研究发现,通过添加从EEG信号中提取的某些特征,可以提高分类准确率。