Suppr超能文献

基于机器学习的脑电图信号分类用于精神分裂症的识别与诊断

EEG Signals Classification Using Machine Learning for The Identification and Diagnosis of Schizophrenia.

作者信息

Zhang Lei

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:4521-4524. doi: 10.1109/EMBC.2019.8857946.

Abstract

This paper presents the design of a machine learning-based classifier for the differentiation between Schizophrenia patients and healthy controls using features extracted from electroencephalograph(EEG) signals based on event related potential(ERP). A number of features are extracted from an online EEG dataset with 81 subjects, including 32 healthy controls and 49 Schizophrenia patients. The EEG signals are preprocessed and since the dataset is relatively small, the random forest machine learning algorithm is chosen to be applied on different combinations of feature sets for classification. It is found that the classification accuracy can be improved by adding certain features extracted from EEG signals.

摘要

本文介绍了一种基于机器学习的分类器设计,该分类器利用基于事件相关电位(ERP)从脑电图(EEG)信号中提取的特征,对精神分裂症患者和健康对照进行区分。从一个包含81名受试者的在线EEG数据集中提取了许多特征,其中包括32名健康对照和49名精神分裂症患者。对EEG信号进行了预处理,由于数据集相对较小,因此选择随机森林机器学习算法应用于不同特征集组合进行分类。研究发现,通过添加从EEG信号中提取的某些特征,可以提高分类准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验