Research Institute of Finance, Hebei Finance University, Baoding, Hebei 071051, China.
School of Management, Hebei Finance University, Baoding, Hebei Province 071051, China.
Comput Intell Neurosci. 2022 Apr 12;2022:7963603. doi: 10.1155/2022/7963603. eCollection 2022.
In order to improve the authenticity of multispectral remote sensing image data analysis, the KNN algorithm and hyperspectral remote sensing technology are used to organically combine advanced multimedia technology with spectral technology to subdivide the spectrum. Different classification methods are used to classify CHRIS 0°, and the results are analyzed and compared: SVM classification accuracy is the highest 72 8448%, Kappa coefficient is 0.6770, and SVM is used to classify CHRIS images from five angles, and the results are compared and analyzed: the classification accuracy is from high to low, and the order is FZA = 0 > FZA = -36 > FZA = -55 > FZA = 36 > FZA = 55; SVM is used to classify the multiangle combined image, and the result is compared with the CHRIS 0° result: the overall classification accuracy of angle-combined image types is lower than that of single-angle images; the SVM is used to classify the band-combined image, and the result is compared with CHRIS 0°: the overall classification accuracy of the band combination image forest type is very low, and the effect is not as good as the combining multiangle image classification results. It is verified that if CHRIS multiangle hyper-spectral data are used for classification, the SVM method should be used to classify spectral remote sensing image data with the best effect.
为了提高多光谱遥感图像数据分析的真实性,将 KNN 算法和高光谱遥感技术有机地结合起来,将先进的多媒体技术与光谱技术相结合,对光谱进行细分。使用不同的分类方法对 CHRIS 0°进行分类,并对结果进行分析和比较:SVM 分类精度最高为 72.8448%,Kappa 系数为 0.6770;使用 SVM 对 CHRIS 从五个角度进行分类,并对结果进行比较和分析:分类精度从高到低,顺序为 FZA=0> FZA=-36> FZA=-55> FZA=36> FZA=55;使用 SVM 对多角度组合图像进行分类,并将结果与 CHRIS 0°结果进行比较:多角度组合图像类型的总体分类精度低于单角度图像;使用 SVM 对波段组合图像进行分类,并将结果与 CHRIS 0°进行比较:波段组合图像森林类型的整体分类精度非常低,效果不如多角度图像分类结果。验证了如果使用 CHRIS 多角度高光谱数据进行分类,应该使用 SVM 方法对光谱遥感图像数据进行分类,效果最佳。