Xi'an University, Xi'an, Shaanxi 710000, China.
Shaanxi Meteorological Service Center of Agricultural Remote Sensing and Economic Crops, Baoji, Shaanxi 721199, China.
Comput Intell Neurosci. 2022 Jun 2;2022:1764507. doi: 10.1155/2022/1764507. eCollection 2022.
In order to solve the problem of low efficiency of image feature matching in traditional remote sensing image database, this paper proposes the feature matching optimization of multimedia remote sensing images based on multiscale edge extraction, expounds the basic theory of multiscale edge, and then registers multimedia remote sensing images based on the selection of optimal control points. In this paper, 100 remote sensing images with a size of 3619825 with a resolution of 30 m are selected as experimental data. The computer is configured with 2.9 ghz CPU, 16 g memory, and i7 processor. The research mainly includes two parts: image matching efficiency analysis of multiscale model; matching accuracy analysis of multiscale model and formulation of model parameters. The results show that when the amount of image data is large, feature matching takes more time. With the increase of sampling rate, the amount of image data decreases rapidly, and the feature matching time also shortens rapidly, which provides a theoretical basis for the multiscale model to improve the matching efficiency. The data size is the same, 3619 × 1825, which makes the matching time between images have little difference. Therefore, the matching time increases linearly with the increase of the number of images in the database. When the amount of image data in the database is large, a higher number of layers should be used; when the amount of image data in the database is small, the number of layers of the model should be reduced to ensure the accuracy of matching. The availability of the proposed method is proved.
为了解决传统遥感图像数据库中图像特征匹配效率低的问题,本文提出了基于多尺度边缘提取的多媒体遥感图像特征匹配优化方法,阐述了多尺度边缘的基本理论,然后基于最优控制点的选择对多媒体遥感图像进行配准。本文选取了 100 张大小为 3619825、分辨率为 30m 的遥感图像作为实验数据。计算机配置为 2.9GHzCPU、16g 内存和 i7 处理器。研究主要包括两部分:多尺度模型的图像匹配效率分析;多尺度模型的匹配精度分析和模型参数的制定。结果表明,当图像数据量较大时,特征匹配需要更多的时间。随着采样率的增加,图像数据量迅速减少,特征匹配时间也迅速缩短,为多尺度模型提高匹配效率提供了理论依据。数据量相同,为 3619×1825,使得图像之间的匹配时间差异不大。因此,随着数据库中图像数量的增加,匹配时间呈线性增加。当数据库中的图像数据量较大时,应使用更多的层;当数据库中的图像数据量较小时,应减少模型的层数,以确保匹配的准确性。证明了所提出方法的有效性。