Shi Xiangyan, Zhai Ziwei, Chen Yinglu, Li Jindi, Nordenskiöld Lars
Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China.
School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
Front Genet. 2022 Apr 5;13:870640. doi: 10.3389/fgene.2022.870640. eCollection 2022.
Dynamics spanning the picosecond-minute time domain and the atomic-subcellular spatial window have been observed for chromatin and . The condensed organization of chromatin in eukaryotic cells prevents regulatory factors from accessing genomic DNA, which requires dynamic stabilization and destabilization of structure to initiate downstream DNA activities. Those processes are achieved through altering conformational and dynamic properties of nucleosomes and nucleosome-protein complexes, of which delineating the atomistic pictures is essential to understand the mechanisms of chromatin regulation. In this review, we summarize recent progress in determining chromatin dynamics and their modulations by a number of factors including post-translational modifications (PTMs), incorporation of histone variants, and binding of effector proteins. We focus on experimental observations obtained using high-resolution techniques, primarily including nuclear magnetic resonance (NMR) spectroscopy, Förster (or fluorescence) resonance energy transfer (FRET) microscopy, and molecular dynamics (MD) simulations, and discuss the elucidated dynamics in the context of functional response and relevance.
人们已经观察到染色质在皮秒到分钟的时间尺度以及原子到亚细胞的空间范围内的动态变化。真核细胞中染色质的紧密组织结构阻碍了调控因子接近基因组DNA,这就需要结构的动态稳定和去稳定化来启动下游的DNA活动。这些过程是通过改变核小体以及核小体 - 蛋白质复合物的构象和动态特性来实现的,其中描绘原子水平的图像对于理解染色质调控机制至关重要。在这篇综述中,我们总结了近期在确定染色质动态变化及其受多种因素(包括翻译后修饰(PTM)、组蛋白变体的掺入以及效应蛋白的结合)调控方面取得的进展。我们重点关注使用高分辨率技术获得的实验观察结果,主要包括核磁共振(NMR)光谱、福斯特(或荧光)共振能量转移(FRET)显微镜以及分子动力学(MD)模拟,并在功能响应和相关性的背景下讨论已阐明的动态变化。